Download presentation

Presentation is loading. Please wait.

Published byJonatan Alsbury Modified about 1 year ago

1
1 RS ENE 428 Microwave Engineering Lecture 6 Transmission lines problems and microstrip lines

2
2 Review Input impedance for finite length line –Quarter wavelength line –Half wavelength line Smith chart –A graphical tool to solve transmission line problems –Use for measuring reflection coefficient, VSWR, input impedance, load impedance, the locations of V max and V min

3
3 Ex1 Z L = 25+j50 , given Z 0 = 50 and the line length is 60 cm, the wavelength is 2 m, find Z in. Ex2 A long TL with Z 0 = 50 is terminated in a load Z L = 100-j100 . Use the Smith chart to find a) L b) VSWR c) Z in d) the distance from load to the first voltage minimum

4
4 Ex3 Z L = 80-j100 is located at z = 0 on a lossless 50 line, given the signal wavelength = 2 m, find a) If the line is 0.8 m in length, find Z in. b) VSWR c) What is the distance from load to the nearest voltage maximum d) what is the distance from the input to the nearest point at which the remainder of the line could be replaced by a pure resistance?

5
5 Ex4 A long lossless line with Z 0 = 50 is terminated in a load Z L = 60+j40 . Use the Smith chart to find a) L b) VSWR c) Z in d) the distance from the load to the first voltage maximum

6
6 Impedance matching To minimize power reflection from load Z in = Z 0 Matching techniques 1. Quarter - wave transformers for real load 2. single - stub tuners 3. lumped – element tuners The capability of tuning is desired by having variable reactive elements or stub length.

7
7 Simple matching by adding reactive elements (1) EX5, a load 10-j25 is terminated in a 50 line. In order for 100% of power to reach a load, Z Load must match with Z 0, that means Z Load = Z 0 = 50 . Distance d WTG = ( ) = to point 1+ j2.3. Therefore cut TL and insert a reactive element that has a normalized reactance of -j2.3. The normalized input impedance becomes 1+ j2.3 - j2.3 = 1 which corresponds to the center or the Smith chart.

8
8 Simple matching by adding reactive elements (2) The value of capacitance can be evaluated by known frequency, for example, 1 GHz is given.

9
9 Single stub tuners Working with admittance (Y) since it is more convenient to add shunt elements than series elements Stub tuning is the method to add purely reactive elements Where is the location of y on Smith chart? We can easily find the admittance on the Smith chart by moving 180 from the location of z. Ex6 let z = 2+j2, what is the admittance?

10
10 Stub tuners on Y-chart (Admittance chart) (1) There are two types of stub tuners Shorted end, y = (the rightmost of the Y chart) opened end, y = 0 (the leftmost of the Y chart) Short-circuited shunt stubOpen-circuited shunt stub

11
11 Stub tuners on Y-chart (Admittance chart) (2) Procedure Locate z L and then y L. From y L, move clockwise to 1 jb circle, at which point the admittance y d = 1 jb. On the WTG scale, this represents length d. 2.For a short-circuited shunt stub, locate the short end at then move to jb, the length of stub is then l and then y l = jb. 3. For an open-circuit shunt stub, locate the open end at 0, then move to jb. 4.Total normalized admittance y tot = y d +y l = 1.

12
12 Ex7 What about the open-circuited stub?

13
13 Microstrip (1) The most popular transmission line since it can be fabricated using printed circuit techniques and it is convenient to connect lumped elements and transistor devices. By definition, it is a transmission line that consists of a strip conductor and a grounded plane separated by a dielectric medium

14
14 Microstrip (2) The EM field is not contained entirely in dielectric so it is not pure TEM mode but a quasi-TEM mode that is valid at lower microwave frequency. The effective relative dielectric constant of the microstrip is related to the relative dielectric constant r of the dielectric and also takes into account the effect of the external EM field. Typical electric field lines Field lines where the air and dielectric have been replaced by a medium of effective relative permittivity, eff

15
15 Microstrip (3) Therefore in this case and

16
16 Evaluation of the microstrip configuration (1) Consider t/h < and assume no dependence of frequency, the ratio of w/h and r are known, we can calculate Z 0 as

17
17 Evaluation of the microstrip configuration (2) Assume t is negligible, if Z 0 and r are known, the ratio w/h can be calculated as The value of r and the dielectric thickness (h) determines the width (w) of the microstrip for a given Z 0.

18
18 Characteristic impedance of the microstrip line versus w/h

19
19 Normalized wavelength of the microstrip line versus w/h

20
20 Ex8 A microstrip material with r = 10 and h = mm is used to build a TL. Determine the width for the microstrip TL to have a Z 0 = 50 . Also determine the wavelength and the effective relative dielectric constant of the microstrip line.

21
21 Wavelength in the microstrip line Assume t/h 0.005,

22
22 Attenuation conductor loss dielectric loss radiation loss where c = conductor attenuation (Np/m) d = dielectric attenuation (Np/m

23
23 Conductor attenuation If the conductor is thin, then the more accurate skin resistance can be shown as

24
24 Dielectric attenuation

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google