Download presentation

Presentation is loading. Please wait.

Published byRichard Locks Modified about 1 year ago

1
MICS RFIC Group High efficiency Power amplifier design for mm-Wave 1 Seyed Yahya Mortazavi

2
MICS RFIC Group Outline Introduction: Power amplifier (PA) Metrics Class A, AB, B, C Pas High efficiency Class F Pas mm-Wave PA applications mm-Wave PA challenges and survey Our Designs: Steps, Simulations results Conclusions and future works 2

3
MICS RFIC Group Power amplifier basics 3

4
MICS RFIC Group Power amplifier basics 4 A AB B C VBE A AB B C VCE AABBC ICIC ICIC time Gain and Efficiency trade-off: Class A: highest gain and linearity Class C: highest efficiency …..

5
MICS RFIC Group PA basics 5 ICIC Conduction angle (CA) ωtωt CA Conduction angle (CA) I C0, I C1

6
MICS RFIC Group PA basics High efficiency PAs Class E, switching PAs Class F 6

7
MICS RFIC Group Class F PAs 7 V ce Maximally Flat (F3) Maximum Efficiency (F3) V ce time

8
MICS RFIC Group Class F PA , 1.15 Pi/2, 1.33,1.41 Pi/4 1.17,1.207 Pi/2 1.42,1.5 Pi/4 V m /V dc I m /I dc

9
MICS RFIC Group mm-Wave PAs Application Data Communication (based on FCC frequency allocation): GHz (V-band), GHz, GHz (E-bands), and GHz (W-bands) 77 GHz Automotive Radars > 77 GHz Active Imaging: Security gates, Medical Imaging applications, Radar systems, 9

10
MICS RFIC Group Si-based mm-Wave PAs Low Break-down voltage: Reduces output voltage swing: smaller output power or gain More sensitive to parasitics: Parasitics have Lower impedance as frequency increase Close to f T of transistor: Lower power gain and PAE 10 VCE IC BVCO

11
MICS RFIC Group Si-based mm-wave PAs 11 Frequency (GHz) Pout (dBm) PAE (%) CMOS And SiGe PAs SiGe PAs Frequency (GHz) Pout (dBm) PAE (%)

12
MICS RFIC Group Si-based mm-wave PAs 12 Frequency (GHz) Gain(dB) CMOS And SiGe PAs SiGe PAs Frequency (GHz) Gain (dB)

13
MICS RFIC Group Review- VCE > BVCO 13 79GHz, PAE~ 13.5%, Pout ~ 17.7 dBm, Gain~14 dB, Class AB The external base impedance seen from Q1, Q2, and Q3 is small at Wband frequencies. The resulting effective collectoremitter breakdown voltage allows the output voltage at the collectors to peak above 4.2 V, a factor of 2.5 improvement over BVceo. RFIC-2008

14
MICS RFIC Group Review- Cascoding 77GHz, PAE~ 7.5%, Pout ~ 15 dBm, Gain~22.5 dB, Class AB the CAS topology was preferred to achieve a higher stable gain, better reverse isolation, and improved robustness. A large output voltage swing is tolerated by the CB ( > BVCO) if it is driven with a low base resistance. 14 TMTT-2011

15
MICS RFIC Group Review- Current reuse 15 77GHz, PAE~ 9%, Pout ~ 14.5 dBm, Gain~25 dB, Class AB Current reuse at Driver stage TMTT-2012

16
MICS RFIC Group PA design Steps DC simulations for Knee and BVCO voltages for estimating maximum voltage swing (Vpp), Calculation and simulations for finding transistor size and DC bias current for Class A PA regarding Vpp and required Pout, Current density for max f T is 8~11 mA/um for SiGe HBTs. Input matching for selected size and bias point, Iterative Load-pull simulations for determining parasitic capacitance (Cce or Cp) and verifying Ropt, Changing bias from class A to class AB for max efficiency and Gain, Adjusting Ropt Output matching, 16

17
MICS RFIC Group PA design Steps 17 Bias for class A, Ropt for Load-line Power matching vs conjugate power matching

18
MICS RFIC Group PA design Steps Input matching and load pull (94GHz PA) Load-pull simulation is done for different Lp to get the optimum point over pure real Impedance 18

19
MICS RFIC Group PA design Steps Changing bias point from A to AB 19 VBE PAE (%) Pin (dBm) Rout (Ω) Rout=38Ω Pin = 11 dBm VBE (mV) PAE (%) Gain (dB) Rout=38Ω, Pin=0, 11 dBm

20
MICS RFIC Group Utilizing 3 rd H for efficiency (F3) 20

21
MICS RFIC Group 21 Utilizing 3 rd H for efficiency (F3)

22
MICS RFIC Group Utilizing 3 rd H for efficiency (F3) 22 Pout (dBm) PAE (%) Pdissp (mW) AB F3-filter F3-Harmonic Control Pin (dBm)

23
MICS RFIC Group Utilizing 3 rd H for efficiency (F3) 23

24
MICS RFIC Group Utilizing 3 rd H for efficiency (F3) 24 Pout (dBm) PAE (%) Pdissp (mW) Pin (dBm)

25
MICS RFIC Group 94 GHz 1-Stage Class-F PA (VCC = 1.3V): Schematic 25 Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~10 dBm, P sat : ~11.5 dBm PAE: max %

26
MICS RFIC Group 26 Pout (dBm) P in (dBm) PAE (%) PAEmax =15.3% P-1dB = 7.7dBm S-parameter (dB) Freq (GHz) S22 S11 S21 94 GHz 1-Stage Class-F PA (VCC = 1.3V): Simulations

27
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 1.3V): Layout VBB VCCgnd rfIn rfOut gnd Size: 535μm x 390μm

28
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 2.2V): Schematic Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~15 dBm, P sat : ~16 dBm PAE: max %

29
MICS RFIC Group 29 Pout (dBm) P in (dBm) PAE (%) PAEmax =21.8% P-1dB = 11.9dBm S-parameter (dB) Freq (GHz) S22 S11 S21 94 GHz 1-Stage Class-F PA (VCC = 2.2V): Simulations

30
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 2.2V): Layout VBBVCC gnd rfIn rfOut Size: 530μm x 400μm gnd

31
MICS RFIC Group GHz 2-Stage Class-F PA: Schematic Class-F, 2-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~16 dBm, Output P sat : ~17 dBm PAE: max %

32
MICS RFIC Group 32 Pout (dBm) P in (dBm) PAE (%) PAEmax =22% P-1dB = 9.1dBm S-parameter (dB) Freq (GHz) S22 S11 S21 94 GHz 2-Stage Class-F PA : Simulations

33
MICS RFIC Group GHz 2-Stage Class-F PA : Layout VBB1 VCC1gnd rfIn rfOut gnd VCC2 VBB2gnd Size: 670μm x 490μm

34
MICS RFIC Group 60 GHz 1-Stage Class-F PA with coupled harmonic control: Schematics 34 Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~12.8 dBm, P sat : ~15 dBm PAE: max %

35
MICS RFIC Group 35 Pout (dBm) P in (dBm) PAE (%) PAEmax =25.5% P-1dB = 7.7dBm S-parameter (dB) Freq (GHz) S22 S11 S21 60 GHz 1-Stage Class-F PA with coupled harmonic control: 60 GHz 1-Stage Class-F PA with coupled harmonic control: Simulations These are simulation results including layout sonnet EM-model. Single stage design has ~15 dBm P sat with 25-26% PAE.

36
MICS RFIC Group 60 GHz 1-Stage Class-F PA with coupled harmonic control: 60 GHz 1-Stage Class-F PA with coupled harmonic control: Layout 36 VBB VCCgnd rfInrfOut gnd Size: 710μm x 410μm

37
MICS RFIC Group Design Summary 94GHzPAE (%)IP1dB (dBm)Psat (dBm)Gain (dB) 1stage-1.3V stage-2.2V stage GHzPAE (%)P1dB (dBm)Psat (dBm)Gain (dB) 1stage-1.3V stage-2.2V stage GHzPAE (%)P1dB (dBm)Psat (dBm)Gain (dB) 1stage-1.3V stage-2.2V

38
MICS RFIC Group Si-based mm-wave PAs 38 SiGe PAs Frequency (GHz) Pout (dBm) PAE (%) Frequency (GHz) Gain (dB)

39
MICS RFIC Group Future Works Increasing gain using efficient driving stages Increasing gain using Power combining techniques Improving quality factor of Capacitors using MOM caps Class E PAs 39

40
MICS RFIC Group 60 GHz 1-Stage Class-F PA (VCC = 1.3V): Schematic 40 Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~11 dBm, P sat : ~12.5 dBm PAE: max %

41
MICS RFIC Group 41 Pout (dBm) P in (dBm) PAE (%) PAEmax =25.8% P-1dB = 5.5dBm S-parameter (dB) Freq (GHz) S22 S11 S21 60 GHz 1-Stage Class-F PA (VCC = 1.3V): Simulations These are simulation results including layout sonnet EM-model. Single stage design has ~12.5 dBm P sat with 25-26% PAE.

42
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 1.3V): Layout VBB VCCgnd rfIn rfOut gnd Size: 610μm x 410μm

43
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 2.2V): Schematic Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~9.7 dBm, P sat : ~15 dBm PAE: max %

44
MICS RFIC Group 44 Pout (dBm) P in (dBm) PAE (%) PAEmax =29% P-1dB = 9.7dBm S-parameter (dB) Freq (GHz) S22 S11 S21 60 GHz 1-Stage Class-F PA (VCC = 2.2V): Simulations These are simulation results including layout sonnet EM-model. Single stage design has ~16 dBm P sat with 29-30% PAE.

45
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 2.2V): Layout VBBVCC gnd rfIn rfOut Size: 575μm x 410μm gnd

46
MICS RFIC Group GHz 2-Stage Class-F PA : Schematic Class-F, 2-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~15 dBm, P sat : ~16 dBm PAE: max %

47
MICS RFIC Group 47 Pout (dBm) P in (dBm) PAE (%) PAEmax =28.5% P-1dB = 4.2dBm S-parameter (dB) Freq (GHz) S22 S11 S21 60 GHz 2-Stage Class-F PA : Simulations

48
MICS RFIC Group GHz 2-Stage Class-F PA : Layout VBB1 VCC1gnd rfInrfOut gnd VBB2 VCC2 gnd Size: 900μm x 400μm

49
MICS RFIC Group 33 GHz 1-Stage Class-F PA (VCC = 1.3V): Schematic 49 Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~11 dBm, P sat : ~10.5 dBm PAE: max %

50
MICS RFIC Group 50 Pout (dBm) P in (dBm) PAE (%) PAEmax =30% P-1dB = 2.5dBm S-parameter (dB) Freq (GHz) S22 S11 S21 33 GHz 1-Stage Class-F PA (VCC = 1.3V): Simulations These are simulation results including layout sonnet EM-model. Single stage design has ~10.5 dBm P sat with 29-30% PAE.

51
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 1.3V): Layout VBB VCCgnd rfIn rfOut gnd Size: 615μm x 440μm

52
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 2V): Schematic Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~9.7 dBm, P sat : ~15 dBm PAE: max %

53
MICS RFIC Group 53 Pout (dBm) P in (dBm) PAE (%) PAEmax =40% P-1dB = 4dBm S-parameter (dB) Freq (GHz) S22 S11 S21 33 GHz 1-Stage Class-F PA (VCC = 2V): Simulations These are simulation results including layout sonnet EM-model. Single stage design has ~15 dBm P sat with 39-40% PAE.

54
MICS RFIC Group GHz 1-Stage Class-F PA (VCC = 2V): Layout VBBVCC gnd rfIn rfOut Size: 620μm x 440μm gnd

55
MICS RFIC Group 60 GHz 1-Stage Class-F PA with coupled harmonic control: Schematics 55 Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~12.8 dBm, P sat : ~15 dBm PAE: max %

56
MICS RFIC Group 56 Pout (dBm) P in (dBm) PAE (%) PAEmax =25.5% P-1dB = 7.7dBm S-parameter (dB) Freq (GHz) S22 S11 S21 60 GHz 1-Stage Class-F PA with coupled harmonic control: 60 GHz 1-Stage Class-F PA with coupled harmonic control: Simulations These are simulation results including layout sonnet EM-model. Single stage design has ~15 dBm P sat with 25-26% PAE.

57
MICS RFIC Group 60 GHz 1-Stage Class-F PA with coupled harmonic control: 60 GHz 1-Stage Class-F PA with coupled harmonic control: Layout 57 VBB VCCgnd rfInrfOut gnd Size: 710μm x 410μm

58
MICS RFIC Group 33 GHz 1-Stage Class-F PA with coupled harmonic control: Schematics 58 Class-F, 1-stage design: 2 nd & 3 rd harmonic controls Harmonic filter: high-Z for fund & 3 rd -harmonic, low-Z for 2 nd -harmonic OP -1dB : ~12.8 dBm, P sat : ~15 dBm PAE: max % Harmonic filter Z-matching biasing

59
MICS RFIC Group 59 Pout (dBm) P in (dBm) PAE (%) PAEmax =32% P-1dB = 10.2dBm S-parameter (dB) Freq (GHz) S22 S11 S21 33 GHz 1-Stage Class-F PA with coupled harmonic control: 33 GHz 1-Stage Class-F PA with coupled harmonic control: Simulations These are simulation results including layout sonnet EM-model. Single stage design has ~12.5 dBm P sat with 31-32% PAE.

60
MICS RFIC Group 33 GHz 1-Stage Class-F PA with coupled harmonic control: 33 GHz 1-Stage Class-F PA with coupled harmonic control: Layout 60 VBB VCCgnd rfInrfOut gnd Size: 670μm x 430μm

61
MICS RFIC Group Utilizing 3 rd H for efficiency (F3) 61 Pout (dBm) PAE (%) Pdissp (mW) Ic (mA) Vce (V) time (ps) AB F3-filter F3-Harmonic Control AB F3-filter F3-Harmonic Control Pin (dBm)

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google