Download presentation

Presentation is loading. Please wait.

Published byDasia Leyman Modified over 2 years ago

1
Generalized Additive Models Keith D. Holler September 19, 2005 Keith D. Holler September 19, 2005

2
GLM’s – The Challenge What to do with continuous variables? –Eg. Age, credit score, amount of insurance Options –Categorize – but how? Equal volume, Tree, judgment –Appendix H, “A Practioner’s Guide to GLMs” by Duncan et al –Treat as polynomial The Weierstrass Approximation Theorem Eg Mileage (2 miles)^4 = 16 (25 miles)^4 = 390,625 –Look at categorical estimates, transform, rerun Newage variable = age^3 if age < 20 + age^2 if age < 80 + minimum (age, 80) All forms must be decided BEFORE model is run Obviously, no clear winner!

3
Modelers Aspiration

4
Generalized Additive Models - GAMS GLMs are special case of GAMs Eg LN(E[PP]) = Intercept + f1(age) + f2(gender) + f3(symbol) + f4(marital) The functions f1,f2,f3,f4 can be anything –GLM - Categorical, polynomial, transforms –Non-parametric functional smoothers –Decision trees Balance degrees of freedom, amount of data, and functional form better

5
Smoothers – Partial List Locally weighted running line smoother (LOESS) Regression splines Cubic smoothing splines Monotonic splines B-splines Kernel smoothers Running medians, means, lines GLM – categories or polynomials Decision Trees Many can be extended to multiple dimensions

6
GAM – Keys Backfitting allows reduction of dimension –Residual Z = LN(E[PP]) – intercept – f1(age) – f2(gender) – f4(marital) –Fit Z = f3(symbol) –Now a 2-dimensional problem “Y vs X” Data drives the shape –Not determined apriori –Use of cross validation to find smoothing parameter “Local” – many of the smoothers use only data points close to the point being predicted, instead of all.

7
Example – SAS Code proc gam data=all; class gender marital2; model clclmonz = param(gender marital2) spline(age2,df=4) spline(symbol,df=3) / dist=Poisson; output out=estall p; run;

8
Example – Degrees of Freedom

9
Smoothing Spline Error Criteria ∑ {Y i – g(t i ) } ² + λ ∫ { g” (t)} ² dt –λ is smoothing parameter –Reference: Nonparametric Regression and Generalized Linear Models, Green and Silverman

10
Example – Cross Validation proc gam data=all; class gender marital2; model clclmonz = param(gender marital2) spline(age2) spline(symbol) / method=GCV dist=Poisson; output out=estGCV p; run; Results in degrees of freedom of 17 and 14.

11
Miscellaneous Parameter Estimates – 1 for each value SPLUS References –SAS Proc Gam –Generalized Additive Models, Hastie and Tibshirani

12
Q & A Keith D. Holler PhD, FCAS, ASA, ARM Personal Lines Research Department St. Paul Travelers k d holler@travelers.com (860) 277 – 4808 Research paper in progress for Ratemaking call

Similar presentations

Presentation is loading. Please wait....

OK

Tutorial 5 Thursday February 14 MBP 1010 Kevin Brown.

Tutorial 5 Thursday February 14 MBP 1010 Kevin Brown.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

System design ppt on software engineering Ppt on model view controller jsp Ppt online downloader and converter Ppt on nature and scope of production and operation management Ppt on youth leadership development Ppt on index of industrial production us Ppt on nuclear family and joint family images Ppt on power sharing in india Ppt on non farming activities Ppt on post office protocol