Download presentation

Presentation is loading. Please wait.

Published byEmerson Claxon Modified over 3 years ago

1
THz generation and transport Sara Casalbuoni DESY Hamburg

2
S. Casalbuoni, DESY Overview Motivation Design goals Simulation tools - POP ZEMAX - Mathematica code (B. Schmidt, DESY) THz beam extraction Optical design Simulation of the THz radiation transfer line Summary and outlook

3
S. Casalbuoni, DESY Motivation CDR/CTR 140 m, = 1000, E el = 500 MeV Bunch length measurements with interferometer

4
S. Casalbuoni, DESY Design goals Flat frequency response Low frequency response limit as low as possible BUT –Finite dimensions of transfer line tube and mirrors ( ɸ ≈ 200mm) –Long transfer line ~20m High frequency structures expected from μbunching up to 30THz(10μm)

5
S. Casalbuoni, DESY 30THz Diamond window

6
S. Casalbuoni, DESY Vacuum needed from B. Schmidt

7
S. Casalbuoni, DESY Simulation Tools ZEMAX Commercially available POP (Physical Optic Propagation) B. Schmidt (DESY) Mathematica 2 CODES Huygens-Fresnel principle : Every point of a wave front may be considered as a centre of a secondary disturbance which gives rise to spherical wavelets, and the wave-front at any later instant may be regarded as the envelope of these wavelets. The secondary wavelets mutually interfere. ƞ ξ y x L d first order second order Fraunhofer near field, Fresnel ≃L finite size screen Kirchhoff integral

8
S. Casalbuoni, DESY Input for CTR Fourier Transform with respect to the longitudinal coordinate ζ=z-vt of the radial electric field E r of a uniform bunch charge distribution of radius ρ moving with velocity v in straight line uniform motion (M. Geitz, PhD Thesis).

9
S. Casalbuoni, DESY Ginzburg-Frank Valid: - if CTR screen radius ≳ effective CTR radius a ≳ λ -if L ≫ λ 2 ⇒ far field (Castellano & Verzilov, Phy.Rev.ST-Accel. Beams,1998) ⇒ frequency independent

10
S. Casalbuoni, DESY from P. Schmüser Both conditions satisfied =300 μm L=10m a=30mm

11
S. Casalbuoni, DESY from P. Schmüser Finite size CTR screen =1.5mm L=20m a=30mm

12
S. Casalbuoni, DESY from P. Schmüser Near field =300 μm L=0.5m a=30mm

13
S. Casalbuoni, DESY L=0.5m a=30mm from P. Schmüser Both conditions violated =1.5mm and exact SQRT

14
S. Casalbuoni, DESY ZEMAX Commercially available POP (Physical Optic Propagation) B. Schmidt (DESY) Mathematica Both make use of scalar Fresnel diffraction theory 2 CODES Valid if objects and apertures >> λ |x-ξ|,|y-η|<<L ξ ƞ x y L Fourier transform of Simulation Tools

15
S. Casalbuoni, DESY Free propagation if a ≲ λ and/or L ≲ λ 2 ⇒ I (x, L,ω) frequency dependent L=1 m; a=10 mm; =1000

16
S. Casalbuoni, DESY Dimensions of the CTR screen window =20mm L=40mm; =1000 λ=1.5mm ⇒ f=200GHz

17
S. Casalbuoni, DESY CDR screen intensity @window/@screen 0.75 0.55 0.78 20 mm ɸ=20 mm, slit=1mm ʘʘ ʘ window =20mm L=40mm; =1000 λ=1.5mm ⇒ f=200GHz ɸ=20 mm

18
S. Casalbuoni, DESY Optical design: technical drawing from O. Peters

19
S. Casalbuoni, DESY Optical design CTR screen ɸ =25mm diamond window ɸ =20mm M1 f=630mm ɸ =188mm M2 f=4500mm ɸ =188mm M3 f=3500mm ɸ =188mm M4 f=3000mm ɸ =188mm M5 f=100mm ɸ =100mm final screen 40mm 560mm 3410mm 8990mm 3100mm 2400mm 100mm M1 600mm M2 M3 M4 M5 8990mm 2400mm 100mm 3100mm 3410mm

20
S. Casalbuoni, DESY Simulation of the THz radiation transfer line with ideal thin lenses λ=1.5mm ⇒ f=200GHz; =1000 Intensity @final screen/@window=0.49 CTR screen ɸ =25mm Diamond window ɸ =20mm M1 M2 M3 M4 M5 final screen ɸ =8mm

21
S. Casalbuoni, DESY Simulation of the THz radiation transfer line with ideal thin lenses λ=1.5mm ⇒ f=200GHz =1000 CTRscreen ɸ =25mm Diamond window ɸ =20mm Intensity @final screen/@window=0.49

22
S. Casalbuoni, DESY Good also for a Gaussian beam λ=1.5mm ⇒ f=200GHz =1000 CTRscreen ɸ =25mm Diamond window ɸ =20mm

23
S. Casalbuoni, DESY Simulation of the THz radiation transfer line at different frequencies Intensity @final screen/@window 0.49 0.90 0.99

24
S. Casalbuoni, DESY Transfer function λ(mm) 3 0.3 0.03

25
S. Casalbuoni, DESY Half screen and horizontal polarization: frequency response Intensity @final screen/@window 0.52 0.91 0.99 ʘ

26
S. Casalbuoni, DESY Gaussian beam λ=500nm M3 M4 M5 final screen w 0 =1mm Diamond window ɸ =20mm M1 M2

27
S. Casalbuoni, DESY Summary and outlook 2 simulation tools: very good agreement Optical design for the THz beam line transfer @140m in TTF2: tested for CTR, CDR and Gaussian beam Outlook -”ideal” mirror surface -tests for stability against beam displacement and mirrors misalignment -effect of tilting CTR screen

28
S. Casalbuoni, DESY Electric field of a charge in the laboratory system q observation point θ ⃔

29
S. Casalbuoni, DESY L ≫ λ 2 ⇒ far field characteristic size of the CTR screen

30
S. Casalbuoni, DESY Paraboloid mirrors CTR screen ɸ =25mm Diamond window ɸ =20mm M1 M2 M3 M4 M5 final screen

31
S. Casalbuoni, DESY Paraboloid mirrors

32
S. Casalbuoni, DESY Transfer function

33
S. Casalbuoni, DESY Paraboloid mirrors: half screen and horizontal polarization Half CTR screen ɸ =25mm Diamond window ɸ =20mm M1 M2 M3 M4 M5 final screen Intensity @final screen/@window 0.64

Similar presentations

OK

The Physics of Light And God said, Let there be light: and there was light. And God saw the light, that it was good:

The Physics of Light And God said, Let there be light: and there was light. And God saw the light, that it was good:

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google