Download presentation

Presentation is loading. Please wait.

Published byLayton Weavil Modified over 3 years ago

1
Multinomial Logistic Regression David F. Staples

2
Outline Review of Logistic Regression BCS Example Extension to Multiple Response Groups Nominal Categories Ordinal Categories Model Fitting & Interpretation Shallow Lake Trophic Status

3
Logistic Regression Based on a Binomial Random Variable: Y = {0,1} Prob(Y = 1) = p Prob(Y = 0) = 1-p p(x) = P(Y i = 1|X i ) =, where Xβ = β 0 + β 1 x 1 +…+ β k x k.

4
Logistic Regression Based on a Binomial Random Variable: Y = {0,1} Prob(Y = 1) = p Prob(Y = 0) = 1-p p(x) = P(Y i = 1|X i ) =, where Xβ = β 0 + β 1 x 1 +…+ β k x k. A logit transformation is used to linearize p(x): = β 0 + β 1 x 1 +…+ β k x k = Xβ → The β’s give the additive effect of X’s on the Log Odds Log Odds of ‘Success’

5
Logistic Regression Example Model p as a function of Macrophyte Patch Area glm(BCS ~ Patch_area, family = binomial) Estimate SE z Pr(>|z|) Intercept -2.433e+00 5.108e-01 -4.764 1.9e-06 Patch_area 1.765e-04 4.725e-05 3.736 0.0001 Dichotomous Variable is the Presence/Absence of BCS Y = 1 if BCS Present Y = 0 if BCS Absent p = Prob(BCS Present)

6
Interpreting Logistic Regression glm(BCS ~ Patch_area, family = binomial) Estimate SE z Pr(>|z|) Intercept -2.433e+00 5.108e-01 -4.764 1.9e-06 Patch_area 1.765e-04 4.725e-05 3.736 0.0001 Effect of Patch Area on P(BCS) Non-Linear Transformation Value of Intercept Value of Other Variables

7
Interpreting Logistic Regression For the average size patch area (8374), the log odds ratio would be: -2.433 + 0.0001765 * 8374 = -0.955 exponentiate to get the Odds of Success: exp(-.955) = p/1-p = 0.38, Solve for p, Prob(BCS Present|Area=8374) =.28 glm(BCS ~ Patch_area, family = binomial) Estimate SE z Pr(>|z|) Intercept -2.433e+00 5.108e-01 -4.764 1.9e-06 Patch_area 1.765e-04 4.725e-05 3.736 0.0001

8
Interpreting Logistic Regression When p = 0.5, the log odds equals 0, –2.433 +.0001765*Area = 0. Thus, the patch area for p =.50 is 2.433/.0001765 = 13784.7 glm(BCS ~ Patch_area, family = binomial) Estimate SE z Pr(>|z|) Intercept -2.433e+00 5.108e-01 -4.764 1.9e-06 Patch_area 1.765e-04 4.725e-05 3.736 0.0001

9
Multinomial Logistic Regression Logistic Regression with > 2 response categories Model Probabilities Relative to ‘Reference’ Category Response May be Nominal or Ordinal NominalOrdinal

10
Shallow Lake Trophic Status 3 Categories Defining Lake State: Y = 1 if Lake Clear Y = 2 if Lake Shifting States Y = 3 if Lake Turbid

11
Nominal (un-ordered) Multinomial Logistic library(nnet) multinom(StateNom ~ TP) (Int) TP 2 -2.47 0.012 3 -1.89 0.014 Std. Errors: (Int) TP 2 0.549 0.004 3 0.447 0.004 Residual Deviance: 113.8345 AIC: 121.8345

12
Nominal (un-ordered) Multinomial Logistic Library(nnet) multinom(StateNom ~ TP) (Int) TP 2 -2.47 0.012 3 -1.89 0.014 For TP = 50 p(Shifting) is about 16% of p(Clear)

13
Nominal (un-ordered) Multinomial Logistic For TP = 50 p(Turbid) is about 30% of p(Clear) Library(nnet) multinom(StateNom ~ TP) (Int) TP 2 -2.47 0.012 3 -1.89 0.014

14
Nominal (un-ordered) Multinomial Logistic Odds of Shifting State vs. Clear State

15
Ordinal Multinomial Logistic a.k.a. Proportional Odds Model 3 Ordered Status Categories: Y = 1 if lake clear Y = 2 if lake shifting states Y = 3 if lake turbid

16
Ordinal Multinomial Logistic a.k.a. Proportional Odds Model library(MASS) StateOrd = as.ordered(StateNom) polr(StateOrd ~ TP) Value SE t value TP 0.009 0.002 3.81 Intercepts: Value SE t value 1|2 1.103 0.342 3.22 2|3 1.889 0.397 4.76 Residual Deviance: 118.99 AIC: 124.9897 3 Ordered Status Categories: Y = 1 if lake clear Y = 2 if lake shifting states Y = 3 if lake turbid Assume Same Slope => Fewer Parameters

17
m2 = polr(StateOrd ~ TP) newd = data.frame(TP = seq(0,600)) prd = predict(m2, newdata=newd, type='p') matplot(newd$TP,prd)

18
Nominal/Ordinal Comparison

19
Nominal (un-ordered) Multinomial Logistic Library(nnet) multinom(StateNom ~ TP) (Intercept) TP 2 -2.469517 0.01248172 3 -1.891459 0.01384079 Std. Errors: (Intercept) TP 2 0.5486044 0.004183882 3 0.4465049 0.003932610 Residual Deviance: 113.8345 AIC: 121.8345 For J = 3 Categories defining lake state: Y = 1 if lake clear Y = 2 if lake shifting states Y = 3 if lake turbid

20
Ordinal Multinomial Logistic a.k.a. Proportional Odds Model For J = 3 Categories defining lake state: Y = 1 if lake clear Y = 2 if lake shifting states Y = 3 if lake turbid (State 2 is Intermediate between 1 & 3) Library(MASS) StateOrd = as.ordered(StateNom) polr(StateOrd ~ TP, Hess = T) Value SE t value TP 0.0086 0.0023 3.8085 Intercepts: Value SE t value 1|2 1.1028 0.3417 3.2277 2|3 1.8889 0.3968 4.7605 Residual Deviance: 118.9897 AIC: 124.9897

Similar presentations

OK

MATH 3359 Introduction to Mathematical Modeling Project Multiple Linear Regression Multiple Logistic Regression.

MATH 3359 Introduction to Mathematical Modeling Project Multiple Linear Regression Multiple Logistic Regression.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on curiosity rover Ppt on information system security Free download ppt on social networking sites Mis ppt on nokia x Ppt on conservation of wildlife and natural vegetation of brazil Ppt on suspension type insulators offer Ppt on quality assurance in engineering education Ppt on structure of chromosomes worksheet Ppt on metro cash and carry Ppt on uniform and nonuniform motion