Download presentation

Presentation is loading. Please wait.

Published byJayde Jeffery Modified over 3 years ago

1
The Atwood Machine Two masses suspended over a pulley. m2 m1

2
George Atwood ( ) British scientist that designed the Atwood Machine

3
**Atwood Machine Free Body Diagram**

Newton’s 1st Law Constant Velocity ΣF=0 T-W1=0 T-W2=0 T=W1 T=W2 W1=W2 W1=m1g W2=m2g g=9.8 m/s2 m1 m2 W2 W1

4
**Atwood Machine Free Body Diagram**

Newton’s 2nd Law Acceleration ΣF=ma T-W1=m1(-a) T-W2=m2(a) T=W1+m1(-a) W1+m1(-a)-W2=m2(a) W1-W2=(m1+m2)(a) or T=W2+m2a W2+m2(a)-W1=m1(-a) W2-W1=(m1+m2)(-a) W1=m1g W2=m2g g=9.8 m/s2 m1 m2 a -a W2 W1

5
**Alternate Atwood Machine Interpretation**

6
**Alternate Atwood Machine Interpretation**

Newton’s 1st Law ΣF=0 -W1+W2=0 W1=W2 Newton’s 2nd Law ΣF=ma -W1+W2= (m1+m2)a W2>W1 -W1+W2=(m1+m2)(-a) W2<W1 T W1 m1 T W2 m2 constant velocity T-W2=0 T-W1=0 W1=W2 acceleration T-W1=m1(a) T-W2=m2(a)

7
**Pulley and Inclined Plane**

m1 m2

8
**Pulley and Inclined Plane Free Body Diagram**

T f T m1 m2 W|| N W┴ W2 T-W2=0 const vel T-W2=m2(a) acc up T-W2=m2(-a) acc down Newton’s First Law: ΣF=0 constant velocity (motion or pending motion down) -W||+f+T=0 -W||+f+W2 =0 (const vel) Newton’s Second Law: -W||+f+T=m1(-a) m1 accelerating down the incline -W||-f+T=m1a m1 accelerating up the incline The equations can be combined to give: -W||+f+W2=(m1+m2)(-a) (m1 acc down, m2 acc up) W||-f+W2=(m1+m2)a (m1 acc up, m2 down)

9
**Alternate Pulley and Inclined Plane Interpretation**

W|| m1 f m2 W2 -W||+f+W2 =0 (const vel) -W||+f+W2=(m1+m2)(-a) (m1 acc down, m2 acc up)

10
Pulley Scenario 3 m2 m3 m1

11
T2 T1 T1 m2 m1 T2 m3 W1 W3 Newton’s 1st Law (constant velocity): T1-W1=0 T1=W1 T2-W3=0 T2=W3 -T1+T2=0 Combining Equations: W1=W3

12
T2 T1 -a T1 m2 m1 T2 -a m3 +a W1 W3 Newton’s 2nd Law (acceleration): T2-W3=m3(a) T2=W3+m3(a) T1-W1=m1(-a) T1=W1-m1(a) -T1+T2=m2(-a) Combining Equations: -W1+m1(a)+W3+m3(a)=m2(-a) -W1+W3=(m1+m2+m3)(-a)

13
-a m1 m2 m3 W1 W3 Newton’s 1st Law (constant velocity): Combining Equations: W1=W3 Newton’s 2nd Law (acceleration): T1-W1=m1(-a) T1=W1-m1(a) T2-W3=m3(a) T2=W3+m3(a) -T1+T2=m2(-a) Combining Equations: -W1+m1(a)+W3+m3(a)=m2(-a) -W1+W3=(m1+m2+m3)(-a)

Similar presentations

OK

Newton’s Third Law Newton’s 3 rd Law 3 rd Law examples Example 4-12 – Two blocks on table Example 4-13 – Atwood’s Machine Block on Inclined Plane Canal.

Newton’s Third Law Newton’s 3 rd Law 3 rd Law examples Example 4-12 – Two blocks on table Example 4-13 – Atwood’s Machine Block on Inclined Plane Canal.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on second law of thermodynamics explained Ppt on carbon and its compounds Ppt on next generation 2-stroke engine fuel Ppt on chapter 3 atoms and molecules for kids Ppt on tcp/ip protocol suite by forouzan Ppt on recycling of waste plastics Ppt on networking related topics on typhoons Ppt on conservation of wildlife and natural vegetation in pakistan Ppt on economic development in japan Ppt on different types of dance forms pdf