Presentation is loading. Please wait.

Presentation is loading. Please wait.

NADCA - Die Materials Committee Meeting DIE MATERIALS FOR CRITICAL APPLICATIONS AND INCREASED PRODUCTION RATES Cleveland, OH - November 14, 2001 John F.

Similar presentations


Presentation on theme: "NADCA - Die Materials Committee Meeting DIE MATERIALS FOR CRITICAL APPLICATIONS AND INCREASED PRODUCTION RATES Cleveland, OH - November 14, 2001 John F."— Presentation transcript:

1 NADCA - Die Materials Committee Meeting DIE MATERIALS FOR CRITICAL APPLICATIONS AND INCREASED PRODUCTION RATES Cleveland, OH - November 14, 2001 John F. Wallace David Schwam Quanyou Zhou Case Western Reserve University

2 OUTLINE 1. Shorter cycles - cooling curves in the biscuit. 2. Evaluation of non-ferrous alloys. 3. Results of recently tested die steels.

3 INCREASING PRODUCTIVITY WITH SHORTER CYCLES METHOD: Utilize high thermal conductivity materials to extract heat faster from the large cross sections. EXPERIMENTAL Shot blocks made of H13, Brush Alloy 3 (CuBe-based), Brush MoldMax (CuBe-base), Brush MoldMax XL (copper-base) CMW Anviloy (W), ALLVAC 718 (Ni-base), Nibryl (NiBe). Record cooling curve of the biscuit. Determine “Die Open” time for different shot block materials.

4

5

6

7

8

9 Cooling Curve in the Biscuit with Anvilloy 1150 Shot Block

10 Cooling Curve in the Biscuit with CuBe-C3 Shot Block

11 T H13-Open =28.6(s) T Mold XL-Open =20.0(s) T Anvilloy 1150-Open =23.5(s) T Mold Ma-Open =18.0(s) T CuBe-3C-Open =18.2(s)

12 H13 Anvilloy 3C CuBe

13 Effect of Shot Block Material on Cooling Time of Biscuit Die Open” time o F)for Brush Alloy 3C is 18.2 sec. vs sec. for H13. This is a 36% reduction in cycle time.

14 LIST OF NON-FERROUS CANDIDATE MATERIALS MaterialCWMoFeNiTiZrCuBeCrNbSn CMW- Anviloy Kulite-Kuldie Allvac 718L CSM-PM Mo100 Brush-QMAX Copper Beryllium 0.20Bal.2.00 Brush-Nybril 360 Nickel Beryllium Bal Brush-Nybril-FX1 Nickel Beryllium Bal Brush NBCX Bal Brush M220C 0.4Bal.2.00 Brush ToughMet29.00Bal.6.00 Brush ToughMet315.00Bal.8.00 Nickel Beryllium

15 TOTAL CRACK AREA AFTER 15,000 THERMAL FATIGUE CYCLES (1"x1"x7") Test Materials Total Crack Area (x 10 6 m 2 ) 1"X1"X7", WC7 P.G. H13/Oil/49Rc Bohler W303/Oi/45Rc Brush Wrought Nybril FX/44Rc Brush Cast Nybril FX/49Rc Brush Wrought Nybril 360/35Rc Brush Cast Nybril 360-1/34Rc Brush Cast Nybril 360-2/ 35Rc Bohler W100/44Rc Kind RPU1/48Rc Kind TQ1/48Rc Brush QMAX/24Rc CSM PM Mo/20Rc CMW Anviloy 1150/37Rc Kulite Kuldie/33Rc

16 AVERAGE MAXIMUM CRACK LENGTH AFTER 15,000 THERMAL FATIGUE CYCLES (1"x1"x7") Test Materials Average Max Crack Length (x100  m) 1"X1"X7", WC7 Allvac IN718/46Rc (Pitting Depth) P.G. H13/Oil/49Rc Bohler W303/Oi/45Rc Brush Wrought Nybril FX/44Rc Brush Cast Nybril FX/49Rc Brush Wrought Nybril 360/35Rc Brush Cast Nybril 360-1/34Rc Brush Cast Nybril 360-2/ 35Rc Bohler W100/44Rc Kind RPU1/48Rc Kind TQ1/48Rc Brush QMAX/24Rc CSM PM Mo/20Rc CMW Anviloy 1150/37Rc Kulite Kuldie/33Rc

17 Total Crack Area

18 Average Maximum Crack Length

19 Soldering Damage at the Corners of Cu-Ni-Sn Thermal Fatigue Specimens ToughMet 3 ToughMet 2 0.5”

20 Thermal Fatigue Damage in NBCX-1 and M220C-1 NBCX-1 M220C-1 Soldering Thermal Fatigue Cracks Corner 0.5”

21 CORNER DAMAGE IN ALLVAC A-286 (Iron-based w/ca.25% Ni)

22 CermeTi - Titanium Metal Matrix Composite Composition: matrix Ti-6Al-4V + 10wt% TiC particles. Manufacturing: by PM at Dynamet, Burlington MA. Main application: Liner for shot sleeves. Advantages: Low thermal conductivity (5.9 W/mK that is ca. 25% of H13) Good resistance to soldering and dissolving in molten Al Good wear resistance

23 AVERAGE MAXIMUM CRACK LENGTH OF CermeTi-C-10 vs. H Thermal Cycles Average Max Crack Length (x100  m) 1"x1"x7", wC7 CermeTi-C-10 H13/oil quench/50HRC

24

25 TOTAL CRACK AREA OF ALLVAC WH38 AND H Thermal Cycles Total Crack Area (x10 6  m 2 ) WH38H13 2"X2"X7", WC7 H13 / OIL / 51HRC WH38 / 50HRC

26 AVERAGE MAXIMUM CRACK LENGTH OF ALLVAC WH38 AND H Thermal Cycles Average Max Crack Length (x100  m) HW38 H13 2"X2"X7", WC7 H13/ OIL/ 51HRC WH38 / 50HRC

27

28

29

30 TOTAL CRACK AREA OF SCHMIDT H11 AND H Thermal Cycles Total Crack Area (x 10 6  m 2 ) H13SCHMIDT/H11-ESR 2"X2"X7", WC7 H13 / OIL / 51HRC SCHMIDT/H11-ESR/45HRC

31 AVERAGE MAXIMUM CRACK LENGTH OF SCHMIDT H11 AND P.G. H Thermal Cycles Average Max Crack Length (x100  m) H13SCHMIDT/H11-ESR 2"X2"X7",WC7 H13 / OIL/ 51HRC SCHMIDT/H11-ESR/45HRC

32 TOTAL CRACK AREA OF BOHLER 302 AND P.G. H Thermal Cycles Total Crack Area (x10 6  m 2 ) H13BOHLER W302 2"X2"X7", WC7 H13 / OIL / 51HRC W302/47HRC

33 AVERAGE MAXIMUM CRACK LENGTH OF BOHLER W302 AND P.G. H Thermal Cycles Average Max Crack Length (x100  m) 2"X2"X7", WC7 H13 / OIL/ 51HRC W302/47HRC

34 TOTAL CRACK AREA OF THYSSEN 2344 AND P.G. H Thermal Cycles Total Crack Area (x10 6  m 2 ) 2"X2"X7", WC7 H13 / OIL / 51HRC THYSSEN 2344/45HRC

35 AVERAGE MAXIMUM CRACK LENGTH OF THYSSEN 2344(H13) AND P.G. H Thermal Cycles Average Max Crack Length (x100  m) H "X2"X7", WC7 H13 / OIL/ 51HRC Thyssen 2344/47HRC

36 TOTAL CRACK AREA OF KIND H11 AND P.G. H Thermal Cycles Total Crack Area (x10 6  m 2 ) 2"X2"X7", WC7 H13 / OIL / 51HRC KIND H11/47HRC

37 AVERAGE MAXIMUM CRACK LENGTH OF KIND H11 AND P.G. H Thermal Cycles Average Max Crack Length (x100  m) 2"X2"X7", WC7 H13 / OIL/ 51HRC KIND H11/47HRC

38

39 AVERAGE MAXIMUM CRACK LENGTH OF KDA1 AND H Thermal Cycles Average Max Crack Length (x100  m) KDA1H13 2"X2"X7", WC7 H13 KDA1

40

41


Download ppt "NADCA - Die Materials Committee Meeting DIE MATERIALS FOR CRITICAL APPLICATIONS AND INCREASED PRODUCTION RATES Cleveland, OH - November 14, 2001 John F."

Similar presentations


Ads by Google