Presentation is loading. Please wait.

Presentation is loading. Please wait.

High Mountain Water Cerenkov Array in Mexico to detect Extensive Air Showers (HAWC)‏ Humberto Salazar I BUAP, Puebla & INAOE VII SILAFAE Bariloche, January.

Similar presentations


Presentation on theme: "High Mountain Water Cerenkov Array in Mexico to detect Extensive Air Showers (HAWC)‏ Humberto Salazar I BUAP, Puebla & INAOE VII SILAFAE Bariloche, January."— Presentation transcript:

1 High Mountain Water Cerenkov Array in Mexico to detect Extensive Air Showers (HAWC)‏ Humberto Salazar I BUAP, Puebla & INAOE VII SILAFAE Bariloche, January 19, 2009

2 HAWC observatory with its wide field of view of ~ 2 steradians and nearly 100% duty factor, will enable new observations of the TeV sky. HAWC sensitivity at <1TeV is sufficient to detect flaring active galactic nuclei and search for the predicted prompt emission from gamma-ray bursts.

3 Outline Gamma ray Observatories Milagro: The first wide angle gamma ray Ovservatory Hawc: Design, status and perspectives.

4 High Energy Particle Astrophysics What do we know? –Nature accelerates particles to >10 20 eV –Gamma-ray sources accelerate particles to >10 14 eV What do we want to know? –What astrophysical sources accelerate particles? –How do astrophysical sources accelerate particles? –What new high energy physics can we learn from astrophysics?

5 Producing Gamma Rays: Astrophysical Particle Accelerators HST Image of M87 (1994)‏ Black Hole producing relativistic jet of particles Binary Neutron Star Coalescing Artist Conception of Short GRBs Spinning Neutron Star powering a relativistic wind Massive Star Collapsing into a Black Hole SuperComputer Calculation Chandra Image of Crab HESS TeV + x-ray TeV image of Vela Jr. Supernova Remnant

6 1509 fotones >10 GeV Space based Observatories Third EGRET Catalog Radio cuasares y objetos Bl Lac Fuentes EGRET no identificadas Pulsares LMC Ráfaga solar

7

8 Crab pulsar Radio Crab nebula Supernova remanent, Visible Rayos X

9 150 meters Atmospheric interactions High energy  rays induce atmospheric electromagnetic cascades Cosmic rays induce hadronic cascades Charge particles generate cerenkov radiation in air (or in water )‏

10 Cherenkov radiation

11 Complementary detectors for TeV photons Atmospheric Cerenkov telescopesSurface detectors Eenergíy TeV Área > 10 4 m 2 Hadron rejection > 99% Angular resolutión 0.05 o Energy resolution ~15% Aperture sr Duty Cycle 10% Energy TeV Área > 10 4 m 2 Hadron rejection > 95% Angular resolution 0.3 o o Energy resolution ~50% Aperture > 2 sr Duty Cycle > 90% High resolution spectra Detailed studies Exact location Deep scanning of the sky (limited regions)‏ Homogéneous and full sky scanning Extended sources GRBs blazares‏ Multi-wavelenght observations

12 Atmospheric Cherenkov Telescopes Since 1960's Hadron / Photon Discrimination ( “imaging”)‏ (Crab 0.7 TeV - Weekes et al. 1989)‏ Mt Hopkins

13  Whipple: imaging  Hegra: Stereo  HESS [  Veritas]: Telescope array (~Whipple)  MAGIC: 17m antenna low threshold ( 25 GeV!): I+II (2003)‏ New Atmospheric Cherenkov Telescopes CTA + AGIS: Cherenkov Telescope arrays

14 Hinton, rapporteur ICRC 2007

15

16 Water Cherenkov detector (Milagro)‏ Detect cascade particles at ground –Electrons and muons (Cherenkov radiation) –   e  Cherenkov radiation Large area and altitude Wide field of view (45º zenith)‏ ~24 hrs / day

17 (1)Department of Physics, University of Wisconsin (2)Current Address: Department of Physics, University of Utah (3)Santa Crux Institute for Particle Physics, University of California, Santa Cruz (4)Current address: Max-Plank-Institute fur Kernphysik (5)Department of Physics, University of Maryland (6)Los Alamos National Laboratory (7)Department of Physics and Astronomy, George Mason University (8)Department of Physics, New York University (9)Department of Physics and Astronomy, Michigan State University (10)Current address: NASA Goddard Space Flight Center (11)Current address: Massachusetts Institute of Technology (12)Department of Physics, University of New Hampshire (13)Department of Physics and Astronomy, University of California, Irvine D. Berley, 5 E. Blaufuss 5, D.G. Coyne, 3 T. DeYoung, 3,5 B.L. Dingus, 6 R.W. Ellsworth, 7 J.A. Goodman 5, C.P. Lansdell, 5 J.T. Linnemann, 9 J.E. McEnery, 1,10 A.I. Mincer, 8 M.F. Morales, 3,11 P. Nemethy, 8 D. Noyes, 5 J.M. Ryan, 12 F.W. Samuelson, 6 P.M. Saz Parkinson, 3 A. Shoup, 13 G. Sinnis, 6 A.J. Smith, 5 G.W. Sullivan, 5 D.A. Williams, 3 X.W. Xu 6 and G.B. Yodh 13 MILAGRO: Water Cherenkov Detector 50m  80 m at 2850m

18 Milagro 8 meters e  80 meters 50 meters First water Cherenkov detector (gammas)‏ Monitoring at TeV's 2600m masl 898 detectors – 450(t)/273(b) pool – 175 Water tanks (outriggers)‏ 4000 m 2 / 4.0x10 4 m TeV Energy 1700 Hz event rate 0.5 o -1.4 o angular resolution 95% hadron rejection

19 MILAGRO detector Operating since 1999 untill 2008

20 Crab Nebula Mrk 421 Cygnus Region

21 Mrk years data: Jul May 2007 Average flux 67% of Crab Milagro - Events/day ASM Flux cts/s MJD /1/20001/1/20011/1/2002 1/1/2003 1/1/2004 1/1/2005 1/1/2006 1/1/2007 May-Jul 2005 Exces 5  during low X ray activity phase Smith et al. ICRC 2007

22

23 HAWC Scientific case Deep scanning of 2/3 of the  Sky Galactic plane – Cygnus region – Galactic center Diffuse sources and supernova remanents Quasars  Ray Burst Solar flares Dark matter search Requirements Dimensions: 150m  150m  4.8m  100,000 m 3 water Light tight Site 4000masl –Sierra Negra 10 years operation 15xSensitivity of Milagro

24 HAWC Collaboration HAWC-MX INAOE UNAM: –Instituto de Astronomía –Instituto de Física –Instituto de Geofísica –Instituto de Ciencias Nucleares –Centro Geociencias (*)‏ –DGSCA Benemérita Univ. Autónoma Puebla Universidad de Guanajuato CINVESTAV Universidad Michoacana SNH UAM Iztapalapa (*)‏ Universidad Autónoma de Chiapas [Universidad de Guadalajara] HAWC-US Maryland University U. California, Irvine U. California, Santa Cruz Michigan State University George Mason Univ. Los Alamos National Laboratory University of New Hampshire Penn. State University University of Utah University of New Mexico NASA/GSFC + Universita di Torino, Italia + IAFE & Balseiro Bariloche, Argentina

25 HAWC site Closer to equator:  sur = 4  cos(lat) sin(  )  4  (2/3)‏ - 40% overlap with HESS (Galactic plane) - 90% IceCube overlap - 100% overlap with Whipple Strip Survey + VERITAS Cygnus Survey 3º zenith Galactic 48 o

26 HAWC & IceCube HAWC y IceCube same energy range Hadronic Cascades similar fluxes of photons and neutrinos  HAWC catalog at TeV candidates for IceCube. Alert for transient phenomena (GRB), and flares to search neutrinos with Ice Cube

27 El sitio de HAWC Latitud: 18º59’44” Longitud: 97º18’38” Altura: 4098m. 5610m. 4580m. 4km

28 1 km Camino, electricidad e Internet del GTM GTM

29 900 opaque tanks 5m diammeter 4.3m Height 150m x 150m (78% cov.)‏ Reuse of Milagro PMTs & FE electronics

30 Detecto design Milagro: 450 PMT (25x18) capa superficie (1.4m) ‏ 273 PMT (19x13) capa profunda (5.5m) ‏ 175 PMT outriggers Á rea Instrumentada: ~40,000m 2 Separaci ó n PMTs: 2.8m Á rea superficie:3500m 2 Á rea profunda:2200m 2 HAWC: 900 PMTs (30x30) ‏ Separaci ó n 5.0m Capa ú nica a profundidad 4m Á rea instrumentada: 22,500m 2 Separaci ó n PMTs: 5.0m Á rea superficie:22,500m 2 Á rea profunda:22,500m 2 HAWCMilagro

31 Tanks option Cheap & modular –Data adquisition since R&D phase –Water filling ~5 years As sensitive as Milagro with ¼ of instrumentation. Expandible at least two times more Muon - adelgazado 1/ MeV  - adelgazado 1/200 Shower plane Shower particles Cherenkov Photons

32

33 Steel Pipe with Bag Liner Steel pipe can be fabricated on the site up to 7.3m(24’) diameter Top Area of 7.3 m dia is equal to that of 4(2) tanks of 3.6(5)m dia 4.5m high pipe

34

35 Hadron rejection  /hadrón Rejection parameter  /hadrón: C = nHit/cxPE –nHit = detector hits –cxPE = (PEs) >30m from the core Gammas Protons C = 12.0C = 16.3C = 7.5C = 9.7 C = 0.6 C = 3.2C = 1.6

36 Sky scan HAWC survey vs HESS y VERITAS. HAWC M é xico (19 O N). HESS & Veritas Sensitivity for point sources (red) and extended 0.25 O (green).

37 Blazar Monitoring HAWC can measure AGNs variability and gives alerts. AGN within ~ 3  sr will be observedr ~ 5 hrs / day. HAWCobservations will be continous, without any interruptions. Sensitivity 5  HAWC is (10,1,0.1) Crab in (3 min, 5 hr, 1/3 año)‏ Observations of Mrk421 with Cherenkov telescopes 1 month

38 HESS J TeV  =-2.3 Highest energy ~20 TeV Simulated HAWC data for 1 year with 40 TeV exponential cutoff

39 Dark matter particles anhilation: Neutralino WIMP,  fromSUSY 50 GeV< m  < ~ TeV HAWC mapping  3  sr homogeneous exposure — Galactic halo, close group of galaxies (dwarf), cumuls... HAWC Galactico center monitoring Dark Matter search q q... ... Z   lines?  

40 Conclusions Milagro has demonstrated success of the water Cherenkov technique Discovery of TeV emission from the Galactic plane Image of TeV emission from the Cygnus region 7 New Candidate TeV Sources Future Plan is HAWC Building on expertise with Milagro Design improvements in Size, Altitude, Curtains... >10x Milagro sensitivity HAWC is Synergistic Component of Particle Astrophysics Portfolio Gamma-rays point back to astrophysical accelerator Identify which of GLASTs 1000s of sources extend to TeV energies and monitoring these sources daily Determine targets for the Atmospheric Cherenkov Telescopes to use their enhanced angular and energy resolution Improve IceCube sensitivity by identifying flaring sources


Download ppt "High Mountain Water Cerenkov Array in Mexico to detect Extensive Air Showers (HAWC)‏ Humberto Salazar I BUAP, Puebla & INAOE VII SILAFAE Bariloche, January."

Similar presentations


Ads by Google