Download presentation

Presentation is loading. Please wait.

Published byJordyn Lynne Modified over 2 years ago

1
**Figure 4.1. The function f (x1, x2, x3) = m(0, 2, 4, 5, 6).**

2
**Figure 4.2. Location of two-variable minterms.**

x x 1 2 x 1 x 2 1 m 1 m m m 1 2 1 m 2 1 m m 1 3 1 1 m 3 (a) Truth table (b) Karnaugh map Figure Location of two-variable minterms.

3
**Figure 4.3. A simple logic function.**

1 Figure A simple logic function.

4
**Figure 4.4. Location of three-variable minterms.**

5
**Figure 4.5. Examples of three-variable Karnaugh maps.**

1 2 x 3 00 01 11 10 1 1 f = x x + x x 1 3 2 3 1 1 1 (a) The function of Figure 2.18 x x 1 2 x 3 00 01 11 10 1 1 1 1 f = x + x x 1 3 1 2 1 (b) The function of Figure 4.1 Figure Examples of three-variable Karnaugh maps.

6
**Figure 4.6. A four-variable Karnaugh map.**

7
**Figure 4.7. Examples of four-variable maps.**

8
**Figure 4.8. A five-variable Karnaugh map.**

9
**Figure 4.9. Three-variable function f = m(0, 1, 2, 3, 7).**

10
**Figure 4.10. Four-variable function f = m(2, 3, 5, 6, 7, 10, 11, 13, 14).**

11
**Figure 4.11. The function f = m(0, 4, 8, 10, 11, 12, 13, 15).**

12
**Figure 4.12. The function f = m(0, 2, 4, 5, 10, 11, 13, 15).**

x x 1 2 x x 3 4 00 01 11 10 00 1 1 x x x 1 3 4 01 1 1 x x x 2 3 4 11 1 1 x x x 1 3 4 10 1 1 x x x 2 3 4 x x x x x x 1 2 4 1 2 4 x x x x x x 1 2 3 1 2 3 . Figure The function f = m(0, 2, 4, 5, 10, 11, 13, 15).

13
**Figure 4.13. POS minimization of f = M(4, 5, 6).**

14
**Figure 4.14. POS minimization of f = M(0, 1, 4, 8, 9, 12, 15).**

x x 1 2 x x 3 4 00 01 11 10 ( ) 00 x + x 3 4 01 1 1 ( x + x ) 2 3 11 1 1 1 10 1 1 1 1 ( x + x + x + x ) 1 2 3 4 Figure POS minimization of f = M(0, 1, 4, 8, 9, 12, 15).

15
x 1 2 3 4 00 01 11 10 d (a) SOP implementation x x 1 2 x x 3 4 00 01 11 10 ( x + x ) 2 3 00 1 d 01 1 d 11 d ( x + x ) 3 4 10 1 1 d 1 (b) POS implementation Figure Two implementations of f = m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

16
**Figure 4.16. An example of multiple-output synthesis.**

2 x x 3 4 00 01 11 10 00 1 1 x 01 1 1 1 2 x 3 11 1 1 x 4 f 1 10 1 1 x 1 x 3 (a) Function f 1 x 1 x x 1 2 x x x 3 4 3 00 01 11 10 f x 2 00 1 1 2 x 3 01 1 1 x 4 11 1 1 1 (c) Combined circuit for f and f 1 2 10 1 1 (b) Function f 2 Figure An example of multiple-output synthesis.

17
**Please see “portrait orientation” PowerPoint file for Chapter 4**

Figure An example of multiple-output synthesis.

18
**Figure 4.18. Implementation in a CPLD.**

19
**Figure 4.19. Implementation in an FPGA.**

20
7 inputs Figure Using 4-input AND gates to realize a 7-input product term.

21
**Figure 4.21. A factored circuit.**

x 1 x 2 x 4 x x 6 3 x 5 x 2 x 3 x 5 Figure A factored circuit.

22
**Figure 4.22. A multilevel circuit.**

x 1 x 2 f 1 x f 3 2 x 4 Figure A multilevel circuit.

23
x 1 2 3 4 f g Figure A multilevel circuit.

24
**Figure 4.24. The structure of a decomposition.**

1 x 2 3 4 f g h Figure The structure of a decomposition.

25
**Please see “portrait orientation” PowerPoint file for Chapter 4**

Figure An example of decomposition.

26
**Figure 4.26a. Implementation of XOR.**

1 x Å x 1 2 x 2 (a) Sum-of-products implementation x 1 x Å x 1 2 x 2 (b) NAND gate implementation Figure 4.26a. Implementation of XOR.

27
**Figure 4.26b. Implementation of XOR.**

f = x1 x2 = x1x2 + x1x2 = x1(x1 + x2) + x2(x1 + x2) x 1 g x Å x 1 2 x 2 (c) Optimal NAND gate implementation Figure 4.26b. Implementation of XOR.

28
**Please see “portrait orientation” PowerPoint file for Chapter 4**

Figure Conversion to a NAND-gate circuit.

29
**Please see “portrait orientation” PowerPoint file for Chapter 4**

Figure Conversion to a NOR-gate circuit.

30
**Figure 4.29. Circuit for Example 4.10.**

31
**Figure 4.30. Circuit for Example 4.11.**

2 9 x 5 x P 3 4 f P 7 P 2 P P 3 P P 10 6 8 x 4 P 5 Figure Circuit for Example 4.11.

32
**Figure 4.31. Circuit for Example 4.12.**

5 f x 5 (a) NAND-gate circuit (b) Moving bubbles to convert to ANDs and ORs x 1 x 2 x 3 x 4 f x 5 (c) Circuit with AND and OR gates Figure Circuit for Example 4.12.

33
**Figure 4.32. Circuit for Example 4.13.**

34
**Figure 4.33. Representation of f (x1, x2) = m(1, 2, 3).**

01 11 x1 x x f 1 2 x 1 1 2 1x 1 1 1 1 1 x 1 00 10 Figure Representation of f (x1, x2) = m(1, 2, 3).

35
**Figure 4.34. Representation of f (x1, x2, x3) = m(0, 2, 4, 5, 6). **

36
**Figure 4.35. Representation of f = m(0, 2, 3, 6, 7, 8, 10, 15).**

37
**Figure 4.36. Generation of prime implicants for**

38
**Please see “portrait orientation” PowerPoint file for Chapter 4**

Figure Selection of a cover.

39
**Figure 4.38. Generation of prime implicants for**

40
**Please see “portrait orientation” PowerPoint file for Chapter 4**

Figure Selection of a cover.

41
**Please see “portrait orientation” PowerPoint file for Chapter 4**

Figure Selection of a cover for the function in Example 4.15.

42
**Figure 4.41. The coordinate *-operation.**

B A i 1 x i o A * B i i 1 o 1 1 x 1 x Figure The coordinate *-operation.

43
**Figure 4.42. The coordinate #-operation.**

B A i 1 x i e o e A # B i i 1 o e e x 1 e Figure The coordinate #-operation.

44
**Figure 4.43. An example four-variable function.**

1 2 1 2 x x x x 3 4 00 01 11 10 3 4 00 01 11 10 00 1 1 d 00 1 01 d 1 01 11 11 1 1 1 10 1 d 1 10 d 1 1 x = x = 1 5 5 Figure An example four-variable function.

45
**Figure 4.44. Verilog code for the function in Figure 4.5a.**

module func1 (x1, x2, x3, f); input x1, x2, x3; output f; assign f = (~x1 & ~x2 & x3) | (x1 & ~x2 & ~x3) | (x1 & ~x2 & x3) | (x1 & x2 & ~x3) ; endmodule Figure Verilog code for the function in Figure 4.5a.

46
**Figure 4.45. Logic synthesis options in MAX+plusII.**

47
**Figure 4.46. Results of physical design.**

48
**Figure 4.47. Timing simulation results.**

(a) Timing in an FPGA (b) Timing in a CPLD Figure Timing simulation results.

49
**Please see “portrait orientation” PowerPoint file for Chapter 4**

Figure A complete CAD system.

50
**module example4_21 (x1, x2, x3, f); input x1, x2, x3; output f; **

assign f = (~x1 & ~x2 & ~x3) | (~x1 & x2 & ~x3) | (x1 & ~x2 & ~x3) | (x1 & ~x2 & x3) | (x1 & x2 & ~x3); endmodule Figure Verilog code for the function in Figure 4.1.

51
**Figure 4.50. Implementation of the Verilog code in Figure 4.49.**

(from interconnection wires) x x x unused 1 2 3 PAL-like block 1 D Q Figure Implementation of the Verilog code in Figure 4.49.

52
**(from interconnection wires)**

x x x unused 1 2 3 PAL-like block 1 D Q Figure Implementation using XOR synthesis (f = x3 x1x2x3). Figure Implementation using XOR synthesis (f = x3 x1x2x3).

53
**Figure 4.52. Verilog code in Figure 4.49 implemented in a LUT.**

54
**module example4_22 (x1, x2, x3, x4, f); input x1, x2, x3, x4; **

output f; assign f = (~x1 & ~x2 & x3 & ~x4) | (~x1 & ~x2 & x3 & x4) | (x1 & ~x2 & ~x3 & x4) | (x1 & ~x2 & x3 & ~x4) | (x1 & ~x2 & x3 & x4) | (x1 & x2 & ~x3 & x4) ; endmodule Figure Verilog code for f1 in Figure 4.7.

55
**module example4_23 (x1, x2, x3, x4, x5, x6, x7, f); **

input x1, x2, x3, x4, x5, x6, x7; output f; assign f = (x1 & x3 & ~x6) | (x1 & x4 & x5 & ~x6) | (x2 & x3 & x7) | (x2 & x4 & x5 & x7) ; endmodule Figure Verilog code for the function of section 4.6.

56
**Figure 4.55. Two implementations of a 7-variable function.**

x x x x 1 1 3 6 x x 3 1 x x x + x x x 6 2 1 6 2 7 x 6 x x 1 7 x x x x x 4 1 4 5 6 x x 5 3 f x x 6 4 f x 5 x x x x 2 2 3 7 x 3 x 7 x 2 x x x x x 4 2 4 5 7 x 5 x 7 (a) Sum-of-products realization (b) Factored realization Figure Two implementations of a 7-variable function.

57
**Figure P4.1. Expansion of implicant x1x2x3.**

58
**Figure P4.2. Circuit for problem 4.33.**

59
**Figure P4.3. Circuit for problem 4.34.**

Similar presentations

OK

ENGG 340 Midterm Review. Introduced the Concept of Variables and Functions Introduced the Concept of AND, OR, and NOT Introduced the Concept of Truth.

ENGG 340 Midterm Review. Introduced the Concept of Variables and Functions Introduced the Concept of AND, OR, and NOT Introduced the Concept of Truth.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on gym management system Ppt on product marketing Ppt on carburetors Ppt on job satisfaction among employees Ppt on conservation of wildlife and natural vegetation cell Ppt on total internal reflection evanescence Ppt on world mental health day Free ppt on emotional intelligence Ppt on disk formatting freeware Ppt on quadrilaterals and its properties for class 9