Presentation is loading. Please wait.

Presentation is loading. Please wait.

第 5 章 太陽電池 MATLAB 模擬 Program 1: 太陽能電池之輸出電壓、電流、功率響應 Program 2: The output response of buck converter with load variation Program 3: Solar cell with Buck.

Similar presentations


Presentation on theme: "第 5 章 太陽電池 MATLAB 模擬 Program 1: 太陽能電池之輸出電壓、電流、功率響應 Program 2: The output response of buck converter with load variation Program 3: Solar cell with Buck."— Presentation transcript:

1 第 5 章 太陽電池 MATLAB 模擬 Program 1: 太陽能電池之輸出電壓、電流、功率響應 Program 2: The output response of buck converter with load variation Program 3: Solar cell with Buck converter

2 Program 1 太陽的日照強度 =1 kW/m2 時,且溫度 25 度 C , 當 t=0~3000, 負載 R=R1=6, 當 t=30000~7000, 負載 R=R2=7, 當 t=7000~10000, 負載 R=R3=8 。 畫出太陽能電池之 : 輸出電壓響應圖 (Fig.1) , 輸出電流響應圖 (Fig.2) , 輸出功率響應圖 (Fig.3) 。

3 % 太陽的日照強度 =1 kW/m2) 時,且溫度 25 度 C , (t=0~3000, 負載 R=R1=6), (t=30000~7000, R=R2=7), (t=7000~10000, R=R3=8) % 太陽能電池之輸出電壓響應圖 (Fig.1) ,輸出電流響應圖 (Fig.2), 輸出功率響應圖 (Fig.3) clear; clc; % 參數調整 % np = 5; % 並聯個數 ns = 10; % 串聯個數 k = 1.38*(10^-23); % 波茲曼常數 q = 1.63*(10^-19); % 一個電子所含之電荷量 T = 298; % 太陽能表面溫度 Tr = 298; % 參考溫度 A =1.8; % 太陽能板理想因數 Irr = 0.3*(10^-19); % 逆向飽和電流 Eg = 1.1; % 半導體能量間隙所需之能量 Isc = 0.66; % 太陽能板在參考溫度和 1kW/m^2 的日照條件下的短路電流值 Ki = 1.33; % 太陽能板短路電流的溫度係數 Si = 1.0; % 日到強度 1 dv=0.01; t1=3000; t2=7000; MATLAM Program (Photovoltaicwithload1)

4 R1=6; R2=7; R3=8; V(1) =18; Iph = (Isc+Ki*(T-Tr)/1000)*Si; % 公式 (3) Isat = Irr*((T/Tr)^3)*exp(q*Eg*((1/Tr)-(1/T))/(k*A)); % 公式 (2) for t=1:10000 if tI(t) V(t+1)=V(t)-dv; else V(t+1)=V(t); end P(t) = V(t)*I(t); % 公式 (4) end

5 % 電壓響應圖 % t = 1:10000; figure(1) plot(t,V(t),'-b') legend('V(t)',1) xlabel('t') ylabel('V (volt)') hold on % 電流響應圖 % figure(2) plot(t,I(t),'-r',t,IL(t),'-b') legend('I(t)','IL(t)',1) xlabel('t') ylabel('I(amp)') hold on % 功率響應圖 % figure(3) plot(t,P(t),'-r') legend('P(t)',1) xlabel('t') ylabel('P(W)') hold on

6 Figure 1

7 Figure 2

8 Figure 3

9 Program 2 The output response of buck converter with load variation 當 t=0~0.03s, 負載 R=R1=1, 當 t=0.03s~0.07s, R=R2=2, 當 t=0.07s~0.1s, R=R1=1 。 Plot: diode voltage Vd and output voltage Vo of buck converter from 0s to 0.1s (Fig. 1) diode voltage Vd and output voltage Vo of buck converter from 0.029s to 0.035s (Fig. 2) diode voltage Vd and output voltage Vo of buck converter from 0.069s to 0.075s (Fig. 3) inductor current IL from of buck converter from 0s to 0.1s (Fig. 4) inductor current IL from of buck converter from 0.029s to 0.035s (Fig. 5) inductor current IL from of buck converter from 0.069s to 0.075s (Fig. 6)

10 MATLAM Program (Buckconverterwithloadvariation2) %The output response of buck converter with load variation % (t=0~0.03s, 負載 R=R1=1), (t=0.03s~0.07s, R=R2=2), (t=0.07s~0.1s, R=R1=1) % Plot diode voltage Vd and output voltage Vo of buck converter from 0s to 0.1s (Fig. 1) % Plot diode voltage Vd and output voltage Vo of buck converter from 0.029s to 0.035s (Fig. 2) % Plot diode voltage Vd and output voltage Vo of buck converter from 0.069s to 0.075s (Fig. 3) % Plot inductor current IL from of buck converter from 0s to 0.1s (Fig. 4) % Plot inductor current IL from of buck converter from 0.029s to 0.035s (Fig. 5) % Plot inductor current IL from of buck converter from 0.069s to 0.075s (Fig. 6) clear all; clc; %***Set duty cycle*** d=0.75;%Duty cycle d** T= ; % T= N1=200; % N1=200 N2=100; % N2=100, % PWM period Tw=N2*T=0.0005s, % PWM frequency Fw=1/Tw=2kHz % Total simulation time=N1*Tw=200*0.0005s=0.1s,

11 NL1=60; % Time for load in=NL1*Tw=60*0.0005s=0.03s NL2=140; % Time for load out=NL2*Tw=140*0.0005s=0.07s N2d=d*N2; R1=1; R2=2; L=0.005; C=0.001; Vr=20.; %Input voltage of Buck converter IL(1)=0; %*Initail inductor current Vo(1)=0; %Initial output voltage Vi(1)=Vr; %***Calculate output voltage and inductor current*** for i=1:N1 if i

12 for j=1:N2 k=(i-1)*N2+j+1; % k from 2 to N1*N2+1 if j<=N2d %***During Q1 on*** Vi(k)=Vr; IL(k)=IL(k-1)-T*Vo(k-1)/L+T*Vi(k)/L; Vo(k)=1/(1+T/R/C)*(Vo(k-1)+T*IL(k)/C); end if j>N2d %***During Q1 off*** Vi(k)=0.0; IL(k)=IL(k-1)-T*Vo(k-1)/L+T*Vi(k)/L; Vo(k)=1/(1+T/R/C)*(Vo(k-1)+T*IL(k)/C); end

13 %***Plot output voltage and inductor current*** k=1:N1*N2; figure(1) %subplot(3,1,1) %Plot diode voltage Vi and output voltage Vo from 0s to 0.1s plot(k*T,Vi(k),'-b',k*T,Vo(k),'-r') axis([0.0,0.1,-2,25]); legend(4,'Vd','Vo') ylabel('V') xlabel('s') figure(2) %subplot(3,1,2) %Plot diode voltage Vi and output voltage Vo from 0.029s to 0.035s plot(k*T,Vi(k),'-b',k*T,Vo(k),'-r') axis([0.029,0.05,-2,25]); legend(4,'Vd','Vo') ylabel('V') xlabel('s') figure(3) %subplot(3,1,3) %Plot diode voltage Vi and output voltage Vo from 0.069s to 0.075s plot(k*T,Vi(k),'-b',k*T,Vo(k),'-r') axis([0.069,0.1,-2,25]); legend(4,'Vd','Vo') ylabel('V') xlabel('s')

14 figure(4) %subplot(3,1,1) %Plot inductor current IL from 0s to 0.1s plot(k*T,IL(k),'-b') axis([0.0,0.1,-2,20]); legend('IL') ylabel('A') xlabel('s') figure(5) %subplot(3,1,2) %Plot inductor current IL from 0.029s to 0.045s plot(k*T,IL(k),'-b') axis([0.029,0.05,-2,20]); legend('IL') ylabel('A') xlabel('s') figure(6) %subplot(3,1,3) %Plot inductor current IL from 0.069s to 0.085s plot(k*T,IL(k),'-b') axis([0.069,0.1,-2,20]); legend('IL') ylabel('A') xlabel('s')

15 Figure 1

16 Figure 2

17 Figure 3

18 Figure 4

19 Figure 5

20 Figure 6

21 Program 3 Solar cell with Buck converter Duty cycle of buck converter: t=1~2000, duty cycle=0.8 t=2000~4000, duty cycle=0.81 t=4000~6000, duty cycle=0.82 t=6000~8000, duty cycle=0.83 t=8000~10000, duty cycle=0.84 t=10000~12000, duty cycle=0.85 Plot: Solar output voltage V(t) and Buck converter output voltage Vo(t)---Fig. 1 Solar output current I(t) and Buck converter output current Io(t)---Fig. 2 Solar or Buck converter output power P(t)---Fig. 3

22 %Solar cell with Buck converter %Duty cycle of buck converter: t=1~2000, duty cycle=0.8 % t=2000~4000, duty cycle=0.81 % t=4000~6000, duty cycle=0.82 % t=6000~8000, duty cycle=0.83 % t=8000~10000, duty cycle=0.84 % t=10000~12000, duty cycle=0.85 %Solar output voltage V(t) and Buck converter output voltage Vo(t)---Fig. 1 %Solar output current I(t) and Buck converter output current Io(t)---Fig. 2 %Solar or Buck converter output power P(t)---Fig. 3 clear; clc; % 參數調整 % np = 5; % 並聯個數 ns = 10; % 串聯個數 k = 1.38*(10^-23); % 波茲曼常數 q = 1.63*(10^-19); % 一個電子所含之電荷量 T = 298; % 太陽能表面溫度 Tr = 298; % 參考溫度 A =1.8; % 太陽能板理想因數 Irr = 0.3*(10^-19); % 逆向飽和電流 Eg = 1.1; % 半導體能量間隙所需之能量 MATLAM Program (Photovoltaicwithbuckconverter3 )

23 Isc = 0.66; % 太陽能板在參考溫度和 1kW/m^2 的日照條件下的短路電流值 Ki = 1.33; % 太陽能板短路電流的溫度係數 Si = 1.0; % 日到強度 1 dv=0.01; R=4; % Load resistance V(1) =19.5; t1=2000; t2=4000; t3=6000; t4=8000; t5=10000; d1=0.80; %duty cycle of buck converter d2=0.81; %duty cycle of buck converter d3=0.82; %duty cycle of buck converter d4=0.83; %duty cycle of buck converter d5=0.84; %duty cycle of buck converter d6=0.85; %duty cycle of buck converter Iph = (Isc+Ki*(T-Tr)/1000)*Si; % 公式 (3) Isat = Irr*((T/Tr)^3)*exp(q*Eg*((1/Tr)-(1/T))/(k*A)); % 公式 (2)

24 for t=1:12000 I(t) = np*Iph-np*Isat*exp(((q*V(t))/(k*A*T*ns))-1); % 公式 (1)solar cell output currentI(t)~output voltage V(t) P(t) = V(t)*I(t); % 公式 (4) if t

25 Vo(t)=d*V(t); Io(t)=Vo(t)/R; Ii(t)=d*Io(t); if Ii(t)I(t) V(t+1)=V(t)-dv; else V(t+1)=V(t); end

26 % 電壓響應圖 % t = 1:12000; figure(1) plot(t,V(t),'-r',t,Vo(t),'-b') legend('V(t)','Vo(t)',1) xlabel('t') ylabel('V (volt)') hold on % 電流響應圖 % figure(2) plot(t,I(t),'-r',t,Ii(t),'-g',t,Io(t),'-b') legend('I(t)','Ii(t)','Io(t)',1) xlabel('t') ylabel('I(amp)') hold on % 功率響應圖 % figure(3) plot(t,P(t),'-r') legend('P(t)',1) xlabel('t') ylabel('P(W)') hold on

27 Figure 1

28 Figure 2

29 Figure 3


Download ppt "第 5 章 太陽電池 MATLAB 模擬 Program 1: 太陽能電池之輸出電壓、電流、功率響應 Program 2: The output response of buck converter with load variation Program 3: Solar cell with Buck."

Similar presentations


Ads by Google