Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis Shinpei Hasegawa,

Similar presentations


Presentation on theme: "1 Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis Shinpei Hasegawa,"— Presentation transcript:

1 1 Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, Shuhei Furukawa, Katsunori Mochizuki, Yoshinori Kinoshita, and Susumu Kitagawa* J. Am. Chem. Soc. 2007, 129, 2607-2614 演講者:江柏誼

2 2 Porous Coordination Polymers (PCPs) porous coordination polymer Susumu Kitagawa. Natue. 2006, 441, 584-585 [{Rh II 2 (bza) 4 (2-mpyz)} n ]

3 3 PCPs have Characteristics (1)well-ordered porous structures (2)flexible and dynamic behaviors in response to guest molecules (3)designable channel surface functionalities

4 4 Strategies to Functionalize Channel Surfaces I 、 immobilization of coordinatively unsaturated| (Open) Metal Sites (OMS) Noro, S.; Kitagawa, S.; Yamashita, M.; Wada, T. Chem. Commun. 2002, 222-223. {[ZnCu(2,4-pydca) 2 (H 2 O) 3 (DMF)]·DMF} n

5 5 Strategies to Functionalize Channel Surfaces (continued) II 、 introduction of organic groups to provide guest-accessible Functional Organic Sites (FOS) Kitaura, R.; Fujimoto, K.; Noro, S.; Kondo, M.; Kitagawa, S.; Angew. Chem. Int. Ed. 2002, 41, 133-135. [{[Cu 2 (pzdc) 2 (dpyg)] ‧ 8H 2 O} n ] 1,2-dipyridylglycol (dpyg) coordination site guest interaction site

6 6 FOS have Advantages Base-type catalyst is easy to create 。 There are a variety of organic functional groups that can serve as active base sites 。 A new types of catalysts constructed from metal-organic frameworks 。

7 7 4-Btapa 1,3,5-Benzene Tricarboxylic Acid Tris[N-(4-pyridyl)amide] (4-btapa) -NH electron acceptor -C=O electron donor

8 8 Synthesis of 4-Btapa (81%) yellowish white powder

9 9 Synthesis of 1a, 1b, and 1c yellowish white powder (1a) (1b) (1c) colorless (93%)

10 10 ORTEP Drawing of 1a Solid-state 113 Cd CPMAS NMR spectrum of 1a

11 11 Table 1. Selected Bond Distances (Å) and Angles (deg) for {[Cd(4-btapa) 2 (NO 3 ) 2 ]·6H 2 O·2DMF}n (1a) Cd (1)-N12.372 (7)Cd1-N1 1 2.372 (8) Cd1-N1 2 2.372 (8)Cd1-N1 3 2.372 (8) Cd1-N1 4 2.372 (8)Cd1-N1 5 2.372 (7) N1 1 -Cd1-N190.8 (3)N1 2 -Cd1-N190.8 (3) N1 3 -Cd1-N1 N1 4 -Cd1-N189.2 (3) N1 5 -Cd1-N1 N1 2 -Cd1-N1 1 90.8 (3) N1 3 -Cd1-N1 1 89.2 (3)N4 4 -Cd1-N4 1 89.2 (3) N1 5 -Cd1-N1 1 180.0 (4)N1 3 -Cd1-N1 2 89.2 (3) N1 4 -Cd1-N1 2 180.0 (4)N1 5 -Cd1-N1 2 89.2 (3) N1 4 -Cd1-N1 3 90.8 (3)N1 5 -Cd1-N1 3 90.8 (3) N1 5 -Cd1-N1 4 90.8 (3)

12 12 Crystal Structure of 1a

13 13 Two-Fold Interpenetrating 3-D Crystal Structure of 1a to Form Three-Dimension 4.7 X 7.3 Å 2

14 14 Crystal Structure of 1a to Form Another Type of Zigzag Channels 3.3 X 3.6 Å 2

15 15 The Amide Groups on the Channel Surface of 1a Cd O N

16 16 Thermogravimetric Analyses of 1a and 1c at a heating rate of 10 °C min -1 under N 2 Amount of guests in figures is based on one 4-btapa ligand of each compound. {[Cd(4-btapa) 2 (NO 3 ) 2 ] ‧ 6H 2 O ‧ 2DMF} n {[Cd(4-btapa) 2 (NO 3 ) 2 ] ‧ 6MeOH ‧ yH 2 O} n

17 17 XRPD Patterns of 1a and 1b 1a simulation based on the single-crystal structure the as-synthesized 1a the desolvated compound 1b compound 1c obtained by exposing 1b to methanol vapor for 30 h.

18 18 XRPD Patterns for Desolvated Compound 1b Immersed in Slovent

19 19 The Adsorption and Desorption Isotherms of 1b for Methanol adsorption desorption P 0 is the saturated vapor pressure, 102.3 kPa, of N 2 (77 K), and 16.94 kPa, of methanol (298 K). hysteresis loop

20 20 1 H NMR (DMSO-d 6 ) Spectra of 1a that Adsorbed Each Guest Molecule malononitrile ethyl cyanoacetate cyanoacetic acid tert-butyl ester 2.9 0.7 0.6

21 21 IR Spectra in the Region of C≡N Stretching Vibration Bands υ s CN ― υ as CN at 2180 and 2200 cm -1 malononitrile 1a containing malononitrile 1a containing ethyl cyanoacetate 1a containing cyano-acetic acid tert-butyl ester

22 22 Table 2. Knoevenagel Condensation Reaction of Benzlaldehyde with Substrates, Catalyzed by 1a

23 23 Conversion (%) vs Time (h) for Knoevenagel Condensation Reactions

24 24 Conclusion This work describes the construction of a 3D PCP containing guest-accessible amide groups and characterizes the selective inclusion of guest molecules with the structural transformation of the host 。 We observed selective guest inclusion via the hydrogen bond, which is based on not only the size and shape of the incoming guest but also its affinity for the amide group.

25 25 As a result, the Knoevenagel condensation reaction, which is a well-known base-catalyzed model reaction, was selectively promoted in good yield 。 This research is particularly relevant in the context of porous solid-state chemistry in the generation of new materials with FOS 。

26 26 Knoevenagel Condensation mechanism

27 27

28 28

29 29 CP/MAS-NMR(cross polarization magic angle NMR) (1) 在固態 NMR 光譜中,主要導致譜線變寬化的原因有兩個:一個是異核偶 極作用力 (heteronuclear dipolar compling Hamiltonian)( 一 ) 和各向異性 化學位移 (chemical-shift anisotropy, CSA)( 二 ) ,這兩種作用力都包含 (3cos2θ-1) 項。 HIS = -d(3cos2θ-1)IzSz ( 一 ) Hcs = γB0Iz [diso+1/2δCSA(3cos2θ-1)] ( 二 ) Hcs: chemical-shift Hamiltonian( 包括:同性 isotropic term 和異性 anisotropic term) 當 θ =54.74º 時, (3cos2 θ -1) 項為 0 ,可平均掉各項異性的化學位移,保 留各向同性的峰,同時也可以除去異核偶極作用力。如此一來,將樣品與 Z 軸夾角 54.71º 進行實驗,可以得到對稱性佳且線寬窄小的峰,不僅可以使 譜線變窄,也可以縮短鬆弛的時間,大幅縮短實驗進行的時間。此種方法 稱為 MAS-NMR 。 (2) 交叉極化 (cross polarization) :利用射頻脈衝在滿足哈特曼-漢恩 (Hartmann - Hann condition) 的條件之下,將含量較高核種的極化強度轉移 給含量較低的核種。此方法不但能夠提高不靈敏核的訊雜比,同時還能夠減 少收集 FID 訊號的次數,藉此大幅縮短實驗進行的時間。


Download ppt "1 Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis Shinpei Hasegawa,"

Similar presentations


Ads by Google