Download presentation

Presentation is loading. Please wait.

Published byJorge Daughtry Modified over 2 years ago

1
Notes Sample vs distribution “m” vs “µ” and “s” vs “σ” Bias/Variance Bias: Measures how much the learnt model is wrong disregarding noise Variance: Measures how much the learnt model fluctuates around its expected values as the sample varies Bias of an estimator: Assuming the population is specified by the parameter θ, and d(x) is an estimator for that parameter: E[d(x)]-θ Regression with white additive noise: Maximizing likelihood is equivalent to minimizing sum of least squares Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)1

2
Model Selection (1) Cross-validation: Measure generalization accuracy by testing on data unused during training To find the optimal complexity Regularization ( 調整 ): Penalize complex models E’ = error on data + λ model complexity Structural risk minimization (SRM): To find the model simplest in terms of order and best in terms of empirical error on the data Model complexity measure: polynomials of increasing order, VC dimension,... Minimum description length (MDL): Kolmogorov complexity of a data set is defined as the shortest description of data 2 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

3
Model Selection (2) Bayesian Model Selection: Prior on models, p(model) Discussions: When the prior is chosen such that we give higher probabilities to simpler models, the Bayesian approach, regularization, SRM, and MDL are equivalent. Cross-validation is the best approach if there is a large enough validation dataset. 3 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

4
Regression example Coefficients increase in magnitude as order increases: 1: [-0.0769, 0.0016] 2: [0.1682, -0.6657, 0.0080] 3: [0.4238, -2.5778, 3.4675, -0.0002 4: [-0.1093, 1.4356, -5.5007, 6.0454, -0.0019] Please compare with Fig. 4.5, p. 78. 4 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

5
Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)5

7
Multivariate Data 7 Multiple measurements (sensors) d inputs/features/attributes: d-variate N instances/observations/examples Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

8
Multivariate Parameters 8Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

9
Parameter Estimation 9 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

10
Estimation of Missing Values What to do if certain instances have missing attributes? Ignore those instances: not a good idea if the sample is small Use ‘missing’ as an attribute: may give information Imputation: Fill in the missing value Mean imputation: Use the most likely value (e.g., mean) Imputation by regression: Predict based on other attributes 10Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

11
Multivariate Normal Distribution 11Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

12
Multivariate Normal Distribution 12 Mahalanobis distance: ( x – μ ) T ∑ –1 ( x – μ ) measures the distance from x to μ in terms of ∑ (normalizes for difference in variances and correlations) Bivariate: d = 2 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

13
13Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

14
14Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

15
If x i are independent, offdiagonals of ∑ are 0, Mahalanobis distance reduces to weighted (by 1/σ i ) Euclidean distance: If variances are also equal, reduces to Euclidean distance Independent Inputs: Naive Bayes 15Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

16
Parametric Classification If p (x | C i ) ~ N ( μ i, ∑ i ) Discriminant functions 16 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

17
Estimation of Parameters 17Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

18
Different S i Quadratic discriminant 18 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

19
19 likelihoods posterior for C 1 discriminant: P (C 1 |x ) = 0.5 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

20
Shared common sample covariance S Discriminant reduces to which is a linear discriminant Common Covariance Matrix S 20Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

21
Common Covariance Matrix S 21Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

22
When x j j = 1,..d, are independent, ∑ is diagonal p (x|C i ) = ∏ j p (x j |C i )(Naive Bayes’ assumption) Classify based on weighted Euclidean distance (in s j units) to the nearest mean Diagonal S 22Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

23
Diagonal S 23 variances may be different Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

24
Nearest mean classifier: Classify based on Euclidean distance to the nearest mean Each mean can be considered a prototype or template and this is template matching Diagonal S, equal variances 24Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

25
Diagonal S, equal variances 25 * ? Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

26
Model Selection AssumptionCovariance matrixNo of parameters Shared, HypersphericSi=S=s2ISi=S=s2I1 Shared, Axis-alignedS i =S, with s ij =0d Shared, HyperellipsoidalSi=SSi=Sd(d+1)/2 Different, HyperellipsoidalSiSi K d(d+1)/2 26 As we increase complexity (less restricted S), bias decreases and variance increases Assume simple models (allow some bias) to control variance (regularization) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

27
27Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

28
Discrete Features 28 Binary features: if x j are independent (Naive Bayes’) the discriminant is linear Estimated parameters Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

29
Multinomial (1-of-n j ) features: x j Î {v 1, v 2,..., v n j } if x j are independent Discrete Features 29Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

30
Multivariate Regression 30 Multivariate linear model Multivariate polynomial model: Define new higher-order variables z 1 =x 1, z 2 =x 2, z 3 =x 1 2, z 4 =x 2 2, z 5 =x 1 x 2 and use the linear model in this new z space (basis functions, kernel trick: Chapter 13) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google