Download presentation

Presentation is loading. Please wait.

Published byLara Mowry Modified about 1 year ago

1
T AFSM SUPG STABILIZATION PARAMETERS CALCULATED FROM THE QUADRATURE-POINT COMPONENTS OF THE ELEMENT-LEVEL MATRICES ECCOMAS 2004 J. ED AKIN TAYFUN TEZDUYAR Mechanical Engineering, Rice University Houston, Texas

2
T AFSM

3
T AFSM

4
T AFSM

5
T AFSM

6
T AFSM

7
T AFSM

8
T AFSM

9
T AFSM Quadrature-point based defined: c = ∑ q c q, k ~ = ∑ q k ~ q ( S1 ) q = || c q || / || k ~ q || I = ∑ q ( S1 ) q f (c q, k ~ q, …) Element work arrays: c q and k ~ q

10
T AFSM

11
T AFSM Solution surface from Q4 elements and element-based S1

12
T AFSM Contours for mesh Q4: SUGN1 (top), element based S1 (lower left), quadrature-point based S1 (lower right)

13
T AFSM Contours for T3 mesh: SUGN1 (top), element based S1 (lower left), quadrature-point based S1 (lower right)

14
T AFSM Quadrature-point-based S1 contours for: Q4 mesh (top), Q9 mesh (lower left), Q16 mesh (lower right)

15
T AFSM Element-based S1 contours for: Q4 mesh (top), Q9 mesh (lower left), Q16 mesh (lower right)

16
T AFSM Quadrature-point-based S1 contours for: T3 mesh (top), T6 mesh (lower left), T10 mesh (lower right)

17
T AFSM Element-based S1 contours for: T3 mesh (top), T6 mesh (lower left), T10 mesh (lower right)

18
T AFSM Constant y-plane solution for S1 from: Q4 mesh (top), T3 mesh (bottom)

19
T AFSM Constant y-plane solution for Q4, Q9, Q16 for S1: quadrature-point-based (top), element-based (bottom)

20
T AFSM Constant y-plane solution for T3, T6, T10 for S1 : quadrature-point-based (top), element-based (bottom)

21
T AFSM Constant x-plane solution for quadrature-point-based S1 : Q4, Q9, Q16 meshes (top), T3, T6, T10 meshes (bottom)

22
T AFSM Discrete Point Values of The previous contours hide information because they omit the mesh detail and are “smoothed” through different point locations: –Element-based at element centroid –Quadrature-point-based positions –Nodal-point-based positions

23
T AFSM Finest T3 mesh followed by zoom-in by center flow rotation point for contour of: T3, T6, T10 elements, Q4, Q8, Q16 elements. Local Tau values are generally proportional to element length through the point, in the direction of the local velocity.

24
T AFSM Full T3 Mesh

25
T AFSM Zoom on T3 Mesh

26
T AFSM Zoom on T6 Mesh

27
T AFSM Full zoom T6 point values

28
T AFSM Zoom on T10 Mesh

29
T AFSM Zoom on Q8 Mesh

30
T AFSM Full zoom on Q8 point values

31
T AFSM Zoom on Q16 mesh

32
T AFSM Conclusions Quadrature-point norm based values are efficient to compute. They yield higher values in local regions where the unit vector s or r rapidly changes its direction. The element-based norm is a general framework that automatically accounts for local length scales. Both norm-based methods decrease as the element polynomial order increases. Our favorite: element-based norm

33
T AFSM APPENDIX 1 Regular T6 mesh uniform flow field test angles: 0 (horizontal edges), 23 (centroid), 45 (long edge), 90 (vertical edges)

34
T AFSM 0 degrees

35
T AFSM 23 degrees

36
T AFSM 45 degrees

37
T AFSM 90 degrees

38
T AFSM APPENDIX 2 Results from previous ways to evaluate :

39
T AFSM

40
T AFSM

41
T AFSM

42
T AFSM

43
T AFSM

44
T AFSM

45
T AFSM

46
T AFSM

47
T AFSM

48
T AFSM

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google