Download presentation

Presentation is loading. Please wait.

Published byDaphne Raynolds Modified over 2 years ago

1
Chapter 5: Languages and Grammar 1 Compiler Designs and Constructions ( Page 92-158 ) Chapter 5: Languages and Grammar Objectives: Definition of Languages Types of Languages Dr. Mohsen Chitsaz

2
Chapter 5: Languages and Grammar2 Languages Def: Set of words Set of Strings Elements of a language Alphabet Word (Token) (Vocabulary) Grammar Sentence Semantic

3
Chapter 5: Languages and Grammar3 Natural Languages Example: They run a store Formal Languages Example: If (Total > Max) Types of Languages

4
Chapter 5: Languages and Grammar4 Def: G={ , R, P, S} G={V t, V n, P, S} V t V n = Grammars

5
Chapter 5: Languages and Grammar5 Example SimpleDatatype = { Integer, Real, Char, Boolean } Datatype SimpleDatatype SimpleDatatype Integer SimpleDatatype Real SimpleDatatype Boolean SimpleDatatype Char

6
Chapter 5: Languages and Grammar6 Example V t : Terminal Symbols ( word, vocabulary, token } Integer, Char, Real, Boolean V n : Datatype, SimpleDatatype P: Datatype SimpleDatatype SimpleDatatype Integer SimpleDatatype Real SimpleDatatype Boolean SimpleDatatype Char S: Datatype

7
Chapter 5: Languages and Grammar7 Types of Grammars (Chomsky Hierarchy) LHS RHS Type Zero: Unrestricted ABC a a CaaF Type One: Context Sensitive | | <= |B| A -- > a A Bc AB aB Ca abc

8
Chapter 5: Languages and Grammar8 Types of Grammars (Chomsky Hierarchy) Type Two: Context Free | | = 1 Vn Type Three: Regular Grammar is a CFG with Right linear Right Linear A w b A w Left Linear A B w A w

9
Chapter 5: Languages and Grammar9 Context Free Grammar Context Free Grammar G Context Free Language of Grammar L(G) Example: var id: ; integer real char Boolean

10
Chapter 5: Languages and Grammar10 Example S -->oS1 S o1 V n ={S} V t ={0,1} S={S} P={S oS1 S o1}

11
Chapter 5: Languages and Grammar11 Language Def: Language of a grammar: is a set of all sentences accepted by that grammar. L(G) = {w|S ->w} Notation: Kleene Closure(*) Zero or more Positive Closure(+) One or more String Concatenation (.) Union (U)

12
Chapter 5: Languages and Grammar12 Language Example: L(Digit) = {0,1,2,3,4,5,6,7,8,9} L(Alpha) = {a,b, …, z} L(Digit)+ = 2, 24 L(Alpha)* =a,, ab, abc L(Alpha) U (Digit) =a2, b6 Identifier: L(Alpha). ( L(Alpha) U L(Digit) )*

13
Chapter 5: Languages and Grammar13 Derivation 000111 S OS1 00S11 000111 Each of the forms is called Sentential Form of this CFG L(G) = {On 1n; n >= 1}

14
Chapter 5: Languages and Grammar14 Example Write a grammar that produces a set of 0 ’ s & 1 ’ s in any order. It must start with a zero and end with a one. 01 0101 0011 011

15
Chapter 5: Languages and Grammar15 Example S 0A1 S 01 A 0A A 1A A 1 A 0 S 0A1 S 01 A BA B 0 B 1 S A A 01 A oB1 B oB B 1B B 0 B 1

16
Chapter 5: Languages and Grammar16 Example What is the language of this grammar? S cS S bD S c D cD D bS D b

17
Chapter 5: Languages and Grammar17 Example Write a grammar which produces odd numbers of * ’ s L(G) = { *n; n>=1; n MOD 2 <>0}

18
Chapter 5: Languages and Grammar18 Example S (S) S () S b Write a grammar for the language L(G) = {b m C n d n e m f p (gh*) p | m>=2, n>=0, p>=1} Write a grammar for the language L(G) = {b m C n | 1<= n <= m <= 2n}

19
Chapter 5: Languages and Grammar19 Tree Definition: Node Edge Root Children Leaf(Terminal Node) Level Height (Depth) Internal Node External Node Preorder Traversal Inorder Traversal Postorder Traversal Implementation of Tree?

20
Chapter 5: Languages and Grammar20 Context Free Grammar Derivation: How an input sentence can be recognized. Parsing: Process of finding derivation Parser: Automation of parsing. - Left Derivation (Leftmost derivation) - Right Derivation (Rightmost derivation)

21
Chapter 5: Languages and Grammar21 Example Derive String of 01001 Left Derivation : Right Derivation: 1 S ----> 0AB 2 A ----> 1A 3 B ----> 0S 4 S ----> 0S 5 S ----> 1 6 A ----> 0

22
Chapter 5: Languages and Grammar22 Example ----> ----> + ----> ----> Id Sentence id + id

23
Chapter 5: Languages and Grammar23 Derivation tree: Leftmost Derivation: Rightmost Derivation:

24
Chapter 5: Languages and Grammar24 Ambiguous Grammar Example ----> ----> Id ----> + ----> * Sentence a+b*c Is this ambiguous? Definition

25
Chapter 5: Languages and Grammar25 Finite State Machine (Automata) FSM (FSA) Simplified model for digital system Memory Input Output FSM is used as a language recognizer Example: Real Number + 2.44

26
Chapter 5: Languages and Grammar26 BNF (Bachus-Naus Form) + -

27
Chapter 5: Languages and Grammar27 FSM q1

28
Chapter 5: Languages and Grammar28 Grammar -------> + -------> - ------> d -------> d ------> d ------>. ------> d ------>

29
Chapter 5: Languages and Grammar29 Language -21.000 000.12- Recognizer Head State = S Memory INPUT

30
Chapter 5: Languages and Grammar30 Language Lex: Translate regular expression into lexical analyzer program Grammar: Write a grammar to recognize the traffic lights

31
Chapter 5: Languages and Grammar31 Traffic Light D ----> g D D ----> r S S ----> g D S ----> r S S ----> Language? gggrrggrrg …….

32
Chapter 5: Languages and Grammar32 Push Down Machine CFG is accepted by a FSM controlling a Push-down stack Formal Definition:

33
Chapter 5: Languages and Grammar33 Deterministic Finite State Machine (Q, , ,q0, F) (Every move is absolutely determined by the current state and next input) Where: Q: Finite Set of State : Alphabet q0: Starting State (q) F: Final States (Q) : State Transition Function

34
Chapter 5: Languages and Grammar34 Deterministic Finite State Machine Example of a Real Number Q = {S, q1, q2, q3, q4} q0 = {S} F = {q4} = {+, -, d,. }

35
Chapter 5: Languages and Grammar35 = State Transition: (S,+) = q1 (S,-) = q1 (S, d) = q2 (q1, d) = q2 (q2, d) = q2 (q2,. ) = q3 (q3, d) = q4 (q4, d) = q4

36
Chapter 5: Languages and Grammar36 Transition Table input token DFSM: Deterministic Finite State Machine No state with the same outgoing label. No state has more than one transition with the same label. +-.d S q1 q2 q1 q2 q3q2 q3 q4 Acc STATESTATE

Similar presentations

OK

4b 4b Lexical analysis Finite Automata. Finite Automata (FA) FA also called Finite State Machine (FSM) –Abstract model of a computing entity. –Decides.

4b 4b Lexical analysis Finite Automata. Finite Automata (FA) FA also called Finite State Machine (FSM) –Abstract model of a computing entity. –Decides.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on food inflation in india Esophageal anatomy and physiology ppt on cells Ppt on issue of shares and debentures Download ppt on decline of mughal empire Ppt on beer lambert law extinction Ppt on cross-site scripting attack Ppt on law of conservation of momentum Ppt on bank lending to municipalities Topics for ppt on environmental problems Ppt on sea level rise data