Presentation is loading. Please wait.

Presentation is loading. Please wait.

PULMONARY ISSUES IN SPINAL CORD INJURIES Andrew Zadoff MD, FCCP Medical Director ICU and Respiratory Therapy, Shepherd Center Atlanta Pulmonary Associates.

Similar presentations


Presentation on theme: "PULMONARY ISSUES IN SPINAL CORD INJURIES Andrew Zadoff MD, FCCP Medical Director ICU and Respiratory Therapy, Shepherd Center Atlanta Pulmonary Associates."— Presentation transcript:

1 PULMONARY ISSUES IN SPINAL CORD INJURIES Andrew Zadoff MD, FCCP Medical Director ICU and Respiratory Therapy, Shepherd Center Atlanta Pulmonary Associates

2 Health Impact of Pulmonary Problems in SCI* 80% of deaths in cervical injuries are 2 0 to pulmonary problems. 50% of these deaths are 2 0 to pneumonia. As expected, pre-existing lung disease, smoking history, level of SCI, and other nonpulmonary problems related to trauma contribute to respiratory complications. * J Spinal Cord Med.2007;30:309-18

3 Financial Importance Respiratory complications are the most common cause of morbidity and mortality: an incidence of %. 1 Respiratory complications increase length of stay and cost. Mechanical ventilation, pneumonia, need for surgery, and the use of a tracheostomy explain nearly 60% of hospital costs J Spinal Cord Med. 2007; 30: Chest. 2002; 121:

4 PREVIEW ACUTE RESPIRATORY ISSUES ACUTE RESPIRATORY ISSUES PULMONARY PHYSIOLOGY PULMONARY PHYSIOLOGY VENTILATION AND VENTILATORS VENTILATION AND VENTILATORS WEANING WEANING SECRETION CONTROL SECRETION CONTROL OTHER ICU ISSUES OTHER ICU ISSUES

5 Clinical Problem #1 A 17 yo man suffered a C6 fracture dislocation a with resultant C5-6 ASIA A spinal injury after diving into a swimming pool. No LOC and he reports no sense of drowning – friends were at poolside. 2 days after injury mild LLL atelectasis is noted on AM CXR. He notes some dyspnea. ABG 7.38/ 41/ 65 on 2L N/C. Respiratory RX started. Day 3 routine AM CXR shows complete atelectasis on left side. ABG is about the same. What would you do about his respiratory status?

6 PHYSIOLOGY AND LOSS OF FUNCTION Loss of function is predictable if extent of injury is known. Loss of function is predictable if extent of injury is known. Complications may be predictable and potential harm to the patient can be anticipated and prevented. Complications may be predictable and potential harm to the patient can be anticipated and prevented. Recovery of lung function may be predictable. Recovery of lung function may be predictable.

7 ACUTE RESPIRATORY ISSUES Acute neurogenic pulmonary edema Acute neurogenic pulmonary edema Hemodynamic instability, i.e., bradycardia, hypotension, hypothermia – spinal shock Hemodynamic instability, i.e., bradycardia, hypotension, hypothermia – spinal shock Unstable cervical spine/ risk of worsening neurologic injury Unstable cervical spine/ risk of worsening neurologic injury Inspiratory difficulty, loss of respiratory musculature, flail physiology Inspiratory difficulty, loss of respiratory musculature, flail physiology

8 ACUTE RESPIRATORY ISSUES Aspiration risks Aspiration risks Direct injury to the airway Direct injury to the airway Secondary injury to the airway, i.e., ETT and tracheostomy complications, esophageal fistulae to the airway Secondary injury to the airway, i.e., ETT and tracheostomy complications, esophageal fistulae to the airway

9 ACUTE RESPIRATORY ISSUES Loss of cough ability secondary to the loss of expiratory muscles Loss of cough ability secondary to the loss of expiratory muscles Inability to generate high expiratory pressures secondary to ETT’s or trachs Inability to generate high expiratory pressures secondary to ETT’s or trachs Pain, pain meds, and sedation issues Pain, pain meds, and sedation issues Restrictive lung physiology Restrictive lung physiology Brain injuries, ability to follow commands Brain injuries, ability to follow commands

10 PARASYMPATHETHIC TONE “Increased” tone with injuries above the T1 level “Increased” tone with injuries above the T1 level Bronchoconstriction, narrowing of the airways Bronchoconstriction, narrowing of the airways Increased bronchial gland secretion Increased bronchial gland secretion Increased mucus production Increased mucus production Increased viscosity of the mucus Increased viscosity of the mucus

11 ACUTE RESPIRATORY ISSUES For high injuries, ~40 – 60%* of patients will develop atelectasis usually in the left lower lung. For high injuries, ~40 – 60%* of patients will develop atelectasis usually in the left lower lung. Pneumonia is common in acute spinal injuries. In the first 3 – 5 days, it will usually be typical community organisms: strep pneumonia, staph aureus, H. Influenza, Moraxella. After 5 days hospital acquired organisms will be more common. Pneumonia is common in acute spinal injuries. In the first 3 – 5 days, it will usually be typical community organisms: strep pneumonia, staph aureus, H. Influenza, Moraxella. After 5 days hospital acquired organisms will be more common. Anaerobic infections will be < 15% of causes. Anaerobic infections will be < 15% of causes. *J Spinal Cord Med 2007;30:

12 LATE RESPIRATORY ISSUES * Restrictive lung physiology may limit cough and increase risk of pneumonia Restrictive lung physiology may limit cough and increase risk of pneumonia Sleep apnea-prevalence 22-62% Sleep apnea-prevalence 22-62% Natural loss of lung function over time Natural loss of lung function over time Pre- existing lung disease Pre- existing lung disease Blunted respiratory drive or reduced CO2 sensitivity Blunted respiratory drive or reduced CO2 sensitivity * Resp Physiology and Neurobiology 166(2009):129-41

13 PULMONARY PHYSIOLOGY

14 Chest 1994

15 PULMONARY NERVES AND MUSCLES - INSPIRATORY Diaphragm- the major respiratory muscle, 80% of quiet breathing, a smaller % for active breathing Diaphragm- the major respiratory muscle, 80% of quiet breathing, a smaller % for active breathing Works by descending, increasing negative inspiratory pressure, lateral expansion of the rib cage Works by descending, increasing negative inspiratory pressure, lateral expansion of the rib cage Controlled by cervical nerves C3, 4, and 5 (“ C3,4,5 keep the diaphragm alive”) Controlled by cervical nerves C3, 4, and 5 (“ C3,4,5 keep the diaphragm alive”)

16 PULMONARY NERVES AND MUSCLES - INSPIRATORY The intercostal muscles stabilize the chest wall and cause lateral expansion of the mid and upper rib cage. The intercostal muscles stabilize the chest wall and cause lateral expansion of the mid and upper rib cage. The intercostal muscles include internal (expiratory) and external (inspiratory) muscles. The intercostal muscles include internal (expiratory) and external (inspiratory) muscles. The thoracic spine innervates the intercostal muscles, T1-T7 The thoracic spine innervates the intercostal muscles, T1-T7

17 PULMONARY NERVES AND MUSCLES - INSPIRATORY The spinal accessory nerves, cranial nerve XI, innervates the accessory muscles of respiration, the scalene, sternocleidomastoid, and trapezius. The spinal accessory nerves, cranial nerve XI, innervates the accessory muscles of respiration, the scalene, sternocleidomastoid, and trapezius. These muscles pull up the upper chest “opposes” the diaphragm. These muscles pull up the upper chest “opposes” the diaphragm.

18 Chest 1994

19 PULMONARY - NERVES AND MUSCLES - EXPIRATORY The major cough muscles are the abdominal muscles (the rectus and transverse abdominis and external/internal obliques), the internal (expiratory) intercostals, and the clavicular portion of the pectoralis major (C5-7). The major cough muscles are the abdominal muscles (the rectus and transverse abdominis and external/internal obliques), the internal (expiratory) intercostals, and the clavicular portion of the pectoralis major (C5-7). Innervation of the abdominal m. is by the lower thoracic spine. Innervation of the abdominal m. is by the lower thoracic spine.

20 Clinical Problem #2 A 27yo woman C4 complete injury (MVA) comes to your ICU intubated. CXR shows mild atelectasis at the bases. Past medical history discloses no medical or surgical history. What are your ventilator settings?

21 Clinical Problem #3 A 27yo woman C4 complete injury (MVA) comes to your ICU intubated. CXR shows mild atelectasis at the bases. Past medical history discloses no medical or surgical history. 2 days later atelectasis is mildly more pronounced. ABG shows 7.43/38/65 on assist control rate 10, tidal volume 650, PEEP 5, Fi What are your ventilator orders now?

22 VENTILATORS & VENTILATION

23 Ventilation and the Airway Early tracheostomy if appropriate Early tracheostomy if appropriate Monitor cuff pressures, ideally less than 20cm pressure Monitor cuff pressures, ideally less than 20cm pressure Cuff leaks, assisted devices to allow speech Cuff leaks, assisted devices to allow speech

24 VENTILATION High volume ventilation to prevent atelectasis but…. High volume ventilation to prevent atelectasis but…. Keep peak airway pressure < 35cm H 2 O Keep peak airway pressure < 35cm H 2 O Anticipation of recovery: realism, defining target parameters such as vital capacity, minute ventilation, secretion control Anticipation of recovery: realism, defining target parameters such as vital capacity, minute ventilation, secretion control

25 Time of Admission Initial evaluation and physical exam Initial evaluation and physical exam Vital capacity (Vc) and negative inspiratory force (NIF) Vital capacity (Vc) and negative inspiratory force (NIF) ABG ABG Routine cultures, if indicated Routine cultures, if indicated EKG EKG

26 Time of Admission High volume ventilation, low PEEP High volume ventilation, low PEEP Unplugging the airways: aggressive lavage usually with sodium bicarbonate, suctioning. Avoid in-line suction. Unplugging the airways: aggressive lavage usually with sodium bicarbonate, suctioning. Avoid in-line suction. If appropriate: quad or assist cough; inexsufflation; vibratory devices- vests, CPT; bronchoscopy; etc If appropriate: quad or assist cough; inexsufflation; vibratory devices- vests, CPT; bronchoscopy; etc

27 WEANING

28 Weaning Parameters P1 Max - maximal inspiratory pressure P1 Max - maximal inspiratory pressure Spontaneous breathing trials Spontaneous breathing trials Respiratory protocols - therapist driven protocols Respiratory protocols - therapist driven protocols

29 WEANING PARAMETERS Tidal volume, vital capacity, minute ventilation, respiratory rate, negative inspiratory force, maximal inspiratory pressure Tidal volume, vital capacity, minute ventilation, respiratory rate, negative inspiratory force, maximal inspiratory pressure CROP Index = (C dyn X P I max X P a O2/ P A O2) / rate CROP Index = (C dyn X P I max X P a O2/ P A O2) / rate Rapid Shallow Breathing Index = frequency/ tidal volume in breaths/min/L Rapid Shallow Breathing Index = frequency/ tidal volume in breaths/min/L

30 WEANING PARAMETERS Tidal volume > 5cc/ kg Tidal volume > 5cc/ kg Vital capacity > 10cc/ kg Vital capacity > 10cc/ kg Minute ventilation < 10L / min or < 2X normal Minute ventilation < 10L / min or < 2X normal Respiratory rate < 30/ min Respiratory rate < 30/ min CROP index > 13 CROP index > 13 Rapid shallow breathing index < 100 Rapid shallow breathing index < 100

31 WEANING At Shepherd Center, weaning is begun when vital capacity is approximately 8ml/kg and secretions are under control. At Shepherd Center, weaning is begun when vital capacity is approximately 8ml/kg and secretions are under control. Tracheostomy is usually safer and maintains airway control Tracheostomy is usually safer and maintains airway control CPAP/PS trials are used rather than SIMV weaning CPAP/PS trials are used rather than SIMV weaning Time is on our side Time is on our side

32 SECRETION CONTROL High tidal volume ventilation High tidal volume ventilation Sodium bicarbonate, inhaled bronchodilators Sodium bicarbonate, inhaled bronchodilators Turning modalities, tilt and turn beds Turning modalities, tilt and turn beds Inexsufflation Inexsufflation CPT vest CPT vest Quad cough / assisted cough Quad cough / assisted cough IPPB IPPB Intermittent percussive ventilation/ IPV Intermittent percussive ventilation/ IPV

33 INFECTIONS Minimize (optimize) antibiotic use Minimize (optimize) antibiotic use Reduce antibiotic use to specific organism Reduce antibiotic use to specific organism Hand washing, alcohol cleansers, isolation gowns, gloves, oral care Hand washing, alcohol cleansers, isolation gowns, gloves, oral care The payoff- low incidence of C. difficile and ventilator associated pneumonias (VAP) The payoff- low incidence of C. difficile and ventilator associated pneumonias (VAP)

34 LONG TERM ISSUES Identifying care providers prior to discharge, home and physician care Identifying care providers prior to discharge, home and physician care For trach and home ventilator patients, family training, the “what if”s of problem solving, the “AMBU is your friend” speech For trach and home ventilator patients, family training, the “what if”s of problem solving, the “AMBU is your friend” speech Sleep study evaluation (polysomnography) if there is any question Sleep study evaluation (polysomnography) if there is any question Appropriate vaccinations Appropriate vaccinations

35 SHEPHERD DATA WEANING STATISTICS 2007, 2008

36 Weaning at Shepherd Total vents Home with vent 15(18%) 22(22%) Total vents Home with vent 15(18%) 22(22%) C-1, C-2 3/7 3/12 -/27 C-1, C-2 3/7 3/12 -/27 C-3 4/6 2/6 8/21 C-3 4/6 2/6 8/21 C-4 22/25 22/27 23/24 C-4 22/25 22/27 23/ Compiled by Wendy Fritz, RRT Weaned/total weaned/total 2007/2008 Avg # days

37 Weaning at Shepherd C-5 thru 7 22/25 24/26 16/13 C-5 thru 7 22/25 24/26 16/13 T-1 thru 12 6/6 15/18 18/20 T-1 thru 12 6/6 15/18 18/20 Rancho 1 thru 5 10/13 5/6 7/12 Rancho 1 thru 5 10/13 5/6 7/12 Age of non-weans 2007: 77, 34, 61, 46, 31, 35, 31, 19, 59, 58, 52 Age of non-weans 2007: 77, 34, 61, 46, 31, 35, 31, 19, 59, 58, 52 Weaned/Total Weaned/Total Avg # days 2007/2008

38 OTHER MEDICAL ISSUES

39 11/2/09

40

41 Hospital-acquired and Ventilator- associated Pneumonia 1, 2 VAP makes up 1/3 of total nosocomial infections in the ICU- the most common VAP makes up 1/3 of total nosocomial infections in the ICU- the most common % of pts ventilated >48hrs % of pts ventilated >48hrs Mortality rate %, a doubling of mortality rate, depending on population and organism Mortality rate %, a doubling of mortality rate, depending on population and organism Length of stay increases a mean of 6.1 d Length of stay increases a mean of 6.1 d 1. Chest 2006; 130: Am J Respir Crit Care Med 2005; 171:

42 Hospital-acquired and Ventilator- associated Pneumonia Extra costs up to $40,000 per patient Extra costs up to $40,000 per patient Early onset HAP/VAP less than 4 days usually represents community organisms, i.e., antibiotic sensitive Early onset HAP/VAP less than 4 days usually represents community organisms, i.e., antibiotic sensitive Late onset HAP/VAP greater than 5 days usually composed of MDR organisms Late onset HAP/VAP greater than 5 days usually composed of MDR organisms Health care related pneumonia- considered MDR unless otherwise proven Health care related pneumonia- considered MDR unless otherwise proven

43 Hospital-acquired and Ventilator- associated Pneumonia The usual organisms to be considered for empiric antibiotic: MRSA, Pseudomonas, Acinetobactor, other MDR organisms common to your facility. The usual organisms to be considered for empiric antibiotic: MRSA, Pseudomonas, Acinetobactor, other MDR organisms common to your facility. Decide if criteria are met for pneumonia: blood cultures, tracheal aspirate culture, abnormal CXR, worsening oxygenation, fever, elevated WBC’s. Decide if criteria are met for pneumonia: blood cultures, tracheal aspirate culture, abnormal CXR, worsening oxygenation, fever, elevated WBC’s.

44 Hospital-acquired and Ventilator- associated Pneumonia Tracheal cultures can include endotracheal aspirate (10 6 cfu’s ), BAL sample ( ), blind mini-BAL(10 3 ), and protected brush(10 3 ). This can include quantitative or semi-quantitative colony counts. Tracheal cultures can include endotracheal aspirate (10 6 cfu’s ), BAL sample ( ), blind mini-BAL(10 3 ), and protected brush(10 3 ). This can include quantitative or semi-quantitative colony counts. Surveillance cultures may not be helpful for antibiotic choice. 1,2 Surveillance cultures may not be helpful for antibiotic choice. 1,2 1.Am J Respir Crit Care Med 2002;165: % correct 2.Chest 2005;127:589 83% correct

45 MODIFIABLE RISK FACTORS for VAP Re-intubation; cuff pressure > 20cm; possibly oral vs nasotracheal; subglottic suctioning; watching for condensate in vent circuits; oral care Re-intubation; cuff pressure > 20cm; possibly oral vs nasotracheal; subglottic suctioning; watching for condensate in vent circuits; oral care Semirecumbent positioning Semirecumbent positioning Enteral feeding is probably better than parenteral nutrition. Enteral feeding is probably better than parenteral nutrition.

46 MODIFIABLE RISK FACTORS for VAP Ulcer prophylaxis- The better the ulcer prophylaxis (higher pH), the higher the risk of VAP. The best agent for both protection is ____? Ulcer prophylaxis- The better the ulcer prophylaxis (higher pH), the higher the risk of VAP. The best agent for both protection is ____? Blood transfusion may increase risk. Blood transfusion may increase risk. Tight glucose control may reduce risk. Tight glucose control may reduce risk. Sedation vacations and avoidance of paralytics may help. Sedation vacations and avoidance of paralytics may help.

47 Hospital-acquired and Ventilator- associated Pneumonia - Antibiotics Know the common bacteria and best pick antibiotic choice. Know the common bacteria and best pick empiric antibiotic choice. Simplify antibiotics when cultures return. Don’t continue gorillacillin if you don’t need it. Simplify antibiotics when cultures return. Don’t continue gorillacillin if you don’t need it. Most pneumonias will respond clinically in 5- 6 days; fever, WBC’s, etc, but X-ray resolution is much slower. Don’t use X-ray resolution as a criteria for stopping Ab’s Most pneumonias will respond clinically in 5- 6 days; fever, WBC’s, etc, but X-ray resolution is much slower. Don’t use X-ray resolution as a criteria for stopping Ab’s

48 Hospital-acquired and Ventilator- associated Pneumonia - Antibiotics Duration of antibiotics- Place stop dates when starting drugs. It can be changed later if need be. Duration of antibiotics- Place stop dates when starting drugs. It can be changed later if need be. Antibiotics for 7-8 days with clinical response except Pseudomonas or Acinetobacter (~14d), or possibly MDR organism Antibiotics for 7-8 days with clinical response except Pseudomonas or Acinetobacter (~14d), or possibly MDR organism Prolonged antibiotics are not associated with better outcomes but are associated with complication. Prolonged antibiotics are not associated with better outcomes but are associated with complication.

49 Clostridium Difficile- Associated Diarrhea (CDAD) CDAD – 6% incremental increase risk of death among critically ill patients CDAD – 6% incremental increase risk of death among critically ill patients 1 Probably does not increase mortality rate in pts with prolonged ventilation >96h Probably does not increase mortality rate in pts with prolonged ventilation >96h Increased length ~ 6 days 2 Increased length ~ 6 days 2 Total costs increased ~ $10,000 2 Total costs increased ~ $10, Chest 2007; 132: Chest 2009; 136:

50 11/2/09

51 DEEP VENOUS THROMBOSIS PROPHYLAXIS DEEP VENOUS THROMBOSIS PROPHYLAXIS High risk group with 40 – 100% risk of occurrence High risk group with 40 – 100% risk of occurrence Pulmonary embolism is the 3 rd leading cause of death in acute SCI Pulmonary embolism is the 3 rd leading cause of death in acute SCI Increased risk with age, lower extremity fracture, complete injury, obesity, etc Increased risk with age, lower extremity fracture, complete injury, obesity, etc

52 DEEP VENOUS THROMBOSIS PROPHYLAXIS* DEEP VENOUS THROMBOSIS PROPHYLAXIS* Low molecular wt heparin or low dose heparin plus pneumatic compression device Low molecular wt heparin or low dose heparin plus pneumatic compression device Use intermittent pneumatic compression and/or graduated compression stocking if risk of bleeding is high Use intermittent pneumatic compression and/or graduated compression stocking if risk of bleeding is high Do not use heparin alone Do not use heparin alone *Antithrombotic and Thrombolytic Therapy. Chest 133(2008)#6

53 DEEP VENOUS THROMBOSIS PROPHYLAXIS DEEP VENOUS THROMBOSIS PROPHYLAXIS Do not automatically use a vena cava filter Do not automatically use a vena cava filter Continue LMWH or use coumadin, INR 2-3 during in-patient rehabilitation or three months Continue LMWH or use coumadin, INR 2-3 during in-patient rehabilitation or three months

54 DECUBITUS ULCER (Forgive me, I’m a pulmonologist) Significant morbidity- bed rest, DVT’s, depression, potential for surgery and surgical complications, infections including osteomyelitis Significant morbidity- bed rest, DVT’s, depression, potential for surgery and surgical complications, infections including osteomyelitis Nutritional- protein loss Nutritional- protein loss Expensive- estimated cost $50,000 – 70,000 per event* Expensive- estimated cost $50,000 – 70,000 per event* *J Rehab Research and Development 40;2003:

55 Thank you for your attention


Download ppt "PULMONARY ISSUES IN SPINAL CORD INJURIES Andrew Zadoff MD, FCCP Medical Director ICU and Respiratory Therapy, Shepherd Center Atlanta Pulmonary Associates."

Similar presentations


Ads by Google