Download presentation

Presentation is loading. Please wait.

Published byAlana Vaughan Modified over 4 years ago

1
Applications of randomized techniques in quantum information theory Debbie Leung, Caltech & U. Waterloo roll up our sleeves & prove a few things

2
Unifying & Simplifying Measurement-based Quantum Computation Schemes Debbie Leung, Caltech & U. Waterloo Light, 95% math free may contain traces of physics

3
Unifying & Simplifying Measurement-based Quantum Computation Schemes Debbie Leung, Caltech & U. Waterloo quant-ph/0404082,0404132 Joint work with Panos Aliferis, Andrew Childs, & Michael Nielsen Hashing ideas from Charles Bennett, Hans Briegel, Dan Browne, Isaac Chuang, Daniel Gottesman, Robert Raussendorf, Xinlan Zhou

4
Universal QC schemes using only simple measurements:

5
1WQC: Universal entangled initial state 1-qubit measurements Universal QC schemes using only simple measurements: 1) One-way Quantum Computer “1WQC” (Raussendorf & Briegel 00) : |+ i = |0 i +|1 i, : controlled-Z Cluster state: Can be easily prepared by (1) |+ i + controlled-Z, or ZZ, or (2) measurements of stabilizers e.g. X Z Z Z Z

6
TQC: Any initial state (e.g. j 00 0 i ) 1&2-qubit measurements j 0 i ⋮ j 0 i u B ==== B ==== B ==== u B ==== u B ==== Universal QC schemes using only simple measurements: 2) Teleportation-based Quantum Computation “TQC” (Nielsen 01, L 01,03) Basic idea in each box: Bell XcZdUXcZdU U c,d

7
1WQC: Universal entangled initial state 1-qubit measurements TQC: Any initial state (e.g. j 00 0 i ) 1&2-qubit measurements j 0 i ⋮ j 0 i u B ==== B ==== B ==== u B ==== u B ==== Universal QC schemes using only simple measurements: 1) One-way Quantum Computer “1WQC” (Raussendorf & Briegel 00) 2) Teleportation-based Quantum Computation “TQC” (Nielsen 01, L 01,03)

8
Rest of talk: 0. Define simulation 1. Review 1-bit-teleportation Qn: are 1WQC & TQC related & can they be simplified? Here: derive simplified versions of both using “1-bit-teleportation” (Zhou, L, Chuang 00) (simplified version of Gottesman & Chuang 99) milk strawberry strawberry ice-cream & strawberry smoothy freeze & mix or mix & freeze 2. Derive intermediate simulation circuits (using much more than measurements) for a universal set of gates 3. Derive measurement-only schemes Ans: 1WQC = repeated use of the teleportation idea Then a big simplification suggests itself.

9
Standard model for universal quantum computation : UU UU 0/1 UU U5U5 UnUn UU 0 : 0 : : time initial state Computation: gates from a universal gate set measure DiVincenzo 95 Wanted: a notion of “composable” elementwise-simulation

10
Simulation of components up to known “leftist” Paulis (input to U), X a Z b (arbitrary known Pauli operator) (c,d) only depends on (a,b,k) k XaZbXaZb U XcZdXcZd (a,b) U U Intended evolution Simulation U simulates itself ,a,b UX a Z b = X c Z d U U Clifford group e.g. e.g. U X,Z: Pauli operators, a,b,c,d {0,1} U simulates I ,a,b UX a Z b = X c Z d U Pauli group e.g.

11
UU UU 0/1 UU U5U5 UnUn 0 : 0 : Composing simulations to simulate any circuit : Simulation of circuit up to known “leftist” Paulis

12
UU UU 0/1 U5U5 UnUn 0 : 0 Composing simulations to simulate any circuit : XaZbXaZb XaZbXaZb : UU Simulation of circuit up to known “leftist” Paulis XaZbXaZb UU UU State = (X a ) (X a )

13
UU UU 0/1 U5U5 UnUn 0 : 0 Composing simulations to simulate any circuit : XaZbXaZb : UU XaZbXaZb XaZbXaZb Simulation of circuit up to known “leftist” Paulis State = (X a ) (X a )

14
0/1 U5U5 UnUn 0 : 0 Composing simulations to simulate any circuit : XaZbXaZb UU UU XaZbXaZb : UU XaZbXaZb Simulation of circuit up to known “leftist” Paulis State = (X a ) (X a ) → X c Z d U 2 U 1

15
UU UU 0/1 UU U5U5 UnUn 0 : 0 Composing simulations to simulate any circuit : XaZbXaZb : XcZdXcZd XcZdXcZd Simulation of circuit up to known “leftist” Paulis → X c Z d U 2 U 1 → X e Z f U 3 U 2 U 1 State = (X a ) (X a )

16
UU UU 0/1 UU U5U5 UnUn 0 : 0 Composing simulations to simulate any circuit : : XaZbXaZb XaZbXaZb XaZbXaZb XaZbXaZb Simulation of circuit up to known “leftist” Paulis

17
UU UU 0/1 UU U5U5 UnUn 0 : 0 Composing simulations to simulate any circuit : : XaZbXaZb XaZbXaZb XaZbXaZb XaZbXaZb Propagate errors without affecting the computation. Final measurement outcomes are flipped in a known (harmless) way. Simulation of circuit up to known “leftist” Paulis

18
1-bit teleportation

19
Z-Telepo (ZT) H c |0 i |i|i Zc|iZc|i H d c dc Teleportation without correction CNOT: Recall:Pauli’s: I, X, Z Hadamard: H H d X-rtation (XT) |0 i |i|i Xd|iXd|i NB. All simulate “I”.

20
Simulating a universal set of gates: Z & X-rotations (1-qubit gates) & controlled-Z with mixed resources.

21
Goal: perform Z rotation e iZ

22
H c |0 i |i|i Zc|iZc|i Goal: perform Z rotation e iZ Z-Telep (ZT)

23
H c |0 i |i|i Zc|iZc|i Goal: perform Z rotation e iZ c Z c e i(-1) a Z X a Z b | i XaZb|iXaZb|i H |0 i e i(-1) a Z = X a Z c+b e iZ | i Z-Telep (ZT) Input state = e i(-1) a Z X a Z b | i Xa eiZXa eiZ

24
c Z-Telep (ZT) H c |0 i |i|i Zc|iZc|i XaZb|iXaZb|i H e i(-1) a Z Simulating a Z rotation e iZ X a Z c+b e iZ | i

25
c Z-Telep (ZT) H H c d |0 i |i|i Zc|iZc|i X-Telep (XT) |0 i |i|i Xd|iXd|i X a Z c+b e iZ | i XaZb|iXaZb|i X a+d Z b e iX | i Simulating a Z rotation e iZ H |0 i e i(-1) a Z Simulating an X rotation e iX H d |0 i XaZb|iXaZb|i e i(-1) b X

26
H d X-Telep (XT) |0 i |i|i Xd|iXd|i 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1 = C-Z: H d1 |0 i H d2 |0 i X a1 Z b1 X a2 Z b2 | i Simulating a C-Z X a1+d1 Z b1+a2+d2 X a2+d2 Z b2+a1+d1 C-Z | i

27
From simulation with mixed resources to TQC -- QC by 1&2-qubit projective measurements only

28
c X a Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ H |0 i e i(-1) a Z

29
c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z An incomplete 2-qubit measurement, followed by a complete measurement on the 1st qubit. “X a2” |0 up to X a2 j HU V Z V†V† j U † XU V † ZV U † ZU k V†ZkVV†ZkV = A little fact: O = measurement of operator O

30
c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ “X a2”

31
c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z “X a2” X a+d Z b+b2 e iX | i Simulating an X rotation e iX d XaZb|iXaZb|i e i(-1) b X “Z b2”

32
c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z “X a2” X a+d Z b+b2 e iX | i Simulating an X rotation e iX d XaZb|iXaZb|i e i(-1) b X “Z b2” H d1 |0 i H d2 |0 i X a1 Z b1 X a2 Z b2 | i Simulating a C-Z X a1’ Z b1’ X a2’ Z b2’ C-Z | i

33
c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z “X a2” X a+d Z b+b2 e iX | i Simulating an X rotation e iX d XaZb|iXaZb|i e i(-1) b X “Z b2” d1 d2 X a1 Z b1 X a2 Z b2 | i Simulating a C-Z H |0 i H X a1’ Z b1’ X a2’ Z b2’ C-Z | i

34
c X a+a2 Z c+b e iZ | i XaZb|iXaZb|i Simulating a Z rotation e iZ He i(-1) a Z “X a2” X a+d Z b+b2 e iX | i Simulating an X rotation e iX d XaZb|iXaZb|i e i(-1) b X “Z b2” d1 d2 X a1 Z b1 X a2 Z b2 | i Simulating a C-Z X a1’ Z b1’ X a2’ Z b2’ C-Z | i Complete recipe for TQC based on 1-bit teleportation

35
Aside: universality of 2-qubit meas is immediate! Bell c,d 2-qubit gate to be teleported 4-qubit state to be prepared d1 d2 Previous TQC with full teleportation: H |0 i H Simplified TQC with 1-bit teleportation: 2-qubit state to be prepared j HH Z j Z ZZ Z X k ZkZk =

36
With slight improvements (see quant-ph/0404132): n-qubitm C-Z up to (m+1)n 1-qubit gates circuit Sufficient 2m 2-qubit meas 2m+n 1-qubit meas in TQC

37
Deriving 1WQC-like schemes using gate simulations obtained from 1-bit teleportation 1WQC: Universal entangled initial state Feedforward 1-qubit measurement

38
General circuit:... Alternating: (1) 1-qubit gates (2) nearest neighbor optional C-Z

39
General circuit:... RzRz RxRx RzRz RzRz RxRx RzRz RzRz RxRx RzRz RzRz RxRx RzRz RzRz RxRx RzRz RzRz RxRx RzRz RzRz RzRz RzRz RzRz Alternating: (1) 1-qubit gates (2) nearest neighbor optional C-Z Z rotations + optional C-Z – X rotations – Z rotations + optional C-Z – X rotations –.... simulate these 2 things Euler-angle decomposition

40
X a+d Z b e iX | i Simulating an X rotation e iX H d |0 i XaZb|iXaZb|i e i(-1) b X Adding an optional C-Z right before Z rotations c1 H |0 i c2 H |0 i e i(-1) a1 Z e i(-1) a2 Z X a1 Z b1 X a2 Z b2 | i X a1 Z b1+a2 k X a2 Z b2 +a1 k C-Z k | i X a1 Z c1+b1+a2 k X a2 Z c2+b2+a2 k e iZ e iZ C-Z k | i Will derive a method for optional C-Z later : the ability to choose to simulate I or C-Z

41
|i|i optional c1 c2 H |0 i H e i(-1) a1 Z e i(-1) a2 Z H d1 |0 i e i(-1) b X H d2 |0 i e i(-1) b X c1’ c2’ H |0 i H e i(-1) a1 Z e i(-1) a2 Z H d1’ |0 i e i(-1) b X H d2’ |0 i e i(-1) b X C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations... Chaining up

42
optional |i|i c1 c2 H |0 i H e i(-1) a1 Z e i(-1) a2 Z H d1 |0 i e i(-1) b X H d2 |0 i e i(-1) b X c1’ c2’ H |0 i H e i(-1) a1 Z e i(-1) a2 Z H d1’ |0 i e i(-1) b X H d2’ |0 i e i(-1) b X Use H|0 i = |+ i, HH=I H H H H H H H H H H H H H H H H = HH C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations... Chaining up

43
|i|i c1 c2 H |+ i H e i(-1) a1 Z e i(-1) a2 Z c1 c2 H |+ i H e i(-1) a1 Z e i(-1) a2 Z d1 |+ i e i(-1) b X d2 |+ i e i(-1) b X H H optional d1 |+ i e i(-1) b X d2 |+ i e i(-1) b X H H C-Z+Z rotations –-- X rotations –-- C-Z+Z rotations –-- X rotations... Chaining up = |+ i Let, Then, initial state = |i|i

44
Circuit dependent initial state: 3 qubits, 8 cycles of C-Z + 1-qubit rotations C-Z Z-rotations X-rotations

45
H d1 |0 i H d2 |0 i X a1 Z b1 X a2 Z b2 | i Recall : simulating a C-Z Simulating an optional C-Z X a1’ Z b1’ X a2’ Z b2’ C-Z | i

46
H d1 |0 i H d2 |0 i Recall : simulating a C-Z H d1 |0 i H d2 |0 i 1. Redrawing the 2nd input to the bottom: Simulating an optional C-Z

47
2. Use symmetry: H d1 |0 i H d2 |0 i 1. Redrawing the 2nd input to the bottom: Just measures the parity of the 2 qubits It is equal to Simulating an optional C-Z j XjXj j

48
2. Use symmetry: H |0 i H d2 d1 Simulating an optional C-Z Just measures the parity of the 2 qubits It is equal to j XjXj j

49
H |0 i H d2 d1 Simulating an optional C-Z

50
H |0 i H d2 d1 3. Use H = = HH Simulating an optional C-Z

51
H |0 i H d2 d1 H H Simulating an optional C-Z 3. Use H = = HH

52
H |0 i H H H H H = Simulating an optional C-Z H |0 i H d2 d1 H H

53
3. Use H |0 i H H H H H = Simulating an optional C-Z H |0 i H d2 d1

54
3. Use H|0 i =|+ i, |+ i d2 d1 “Remote C-Z” : Cousin of the remote CNOT by Gottesman98 H |0 i H d2 d1 Simulating an optional C-Z

55
|+ i If one measures along {|0 i, |1 i }, the C-Zs labeled by ①② only acts like Z d1 Z d2 – simulating identity instead! d1 d2 ①②①② Simulating an optional C-Z |+ i d2 d1 “Remote C-Z” : Cousin of the remote CNOT by Gottesman98

56
Simulating an optional C-Z, summary: |+ i d2 d1 |+ i d1 d2 simulates To do the C-Z:To skip the C-Z:

57
Simulating an optional C-Z, summary: |+ i d2 d1 |+ i d1 d2 simulates To do the C-Z:To skip the C-Z: also simulates Do:Skip: |+ i Y Z up to Z-rotations

58
Universal Initial state 3 qubits, 8 cycles

59
Starting from the cluster state measure in Z basis

60
Universal Initial state 3 qubits, 8 cycles

61
Starting from the cluster state measure in Z basis

62
Other universal initial state with other methods for optional C-Z

64
Summary: Unified derivations, using 1-bit teleportation, for 1WQC & TQC + simplifications Details in quant-ph/0404082,0404132... Related results by Perdrix & Jorrand, Verstraete & Cirac but perhaps you don’t need to see them, you only need to remember what is a simulation (milk), what 1-bit teleportation does (strawberry), and the rest (mix/freeze) comes naturally.

65
Summary: 1-bit teleportation has been used for systematic derivation of simplified constructions of fault tolerant gates. We have seen a similar use in deriving measurement-based QC. It leads to the remote C-Z/CNOT and programmable gate-array. Does it has a special role in quantum information theory?

66
Open issues When it is already so simple ? Further optimizations?

67
Open issues When it is already so simple ? Practically, the most interesting problems are likely to involve a mixture of resources, not just measurements. Measurement-based QC is most important as a conceptual tool. “Strawberry milkshake” taste much better with banana in it !

68
Open issues mixture of resources, not just measurements. Running 1WQC in linear optics Nielsen 04, Drowne & Rudolph 04 Problem in linear optics: - C-Z difficult - C-Z probabilistically by teleportation trick Knill, Laflamme, Milburn01 Idea: Applying faulty C-Z to the data is expensive & failures are painful to repair. Instead, apply C-Z to build a cluster/graph state followed by 1-qubit measurements. Faulty C-Zs percolates the cluster state, but cheap to repair. Qn: optimize construction. Tradeoff between different methods to protect against percolations, e.g. good expensive C-Z vs redundant coding Qn: threshold under linear optics model? (1WQC: Raussendorf PhD thesis, Nielsen & Dawson 04)

69
Open issues (what else to add to pure strawberry milkshake?) no threshold without fresh ancillas and interaction in 1WQC What are reasonable models for such resources ? What are reasonable models for the noise? Again, will be more experimentally motivated. e.g. Photons? Trapped ions? Quantum dots?

Similar presentations

OK

Improved Simulation of Stabilizer Circuits Scott Aaronson (UC Berkeley) Joint work with Daniel Gottesman (Perimeter) 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0.

Improved Simulation of Stabilizer Circuits Scott Aaronson (UC Berkeley) Joint work with Daniel Gottesman (Perimeter) 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0.

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google