Download presentation

Presentation is loading. Please wait.

Published byAngelo Ager Modified over 3 years ago

1
Logic Programming – Part 2 Lists Backtracking Optimization (via the cut operator) Meta-Circular Interpreters

2
Lists – Basic Examples [] – The empty list [X,2,f(Y)] – A 3 element list [X|Xs] – A list starting with X. Xs is a list as well. Example - [3,5] may be written as [3|5|[]]

3
Lists – CFG with Prolog Question: Which sentences can be constructed using this grammar? s -> np vp np -> det n vp -> v np | v det -> a | the n -> woman | man v -> shoots s -> np vp np -> det n vp -> v np | v det -> a | the n -> woman | man v -> shoots

4
Lists – CFG with Prolog Lets make relations out of it: s(Z) :- np(X), vp(Y), append(X,Y,Z). np(Z) :- det(X), n(Y), append(X,Y,Z). vp(Z) :- v(X), np(Y), append(X,Y,Z). vp(Z) :- v(Z). det([the]). det([a]). n([woman]). n([man]). v([shoots]). s -> np vp np -> det n vp -> v np | v det -> a | the n -> woman | man v -> shoots s -> np vp np -> det n vp -> v np | v det -> a | the n -> woman | man v -> shoots

5
Lists – CFG with Prolog We can ask simple queries like: Prolog generates entire sentences! s([a,woman,shoots,a,man]). yes ?-s(X). X = [the,woman,shoots,the,woman] ; X = [the,woman,shoots,the,man] ; X = [the,woman,shoots,a,woman] ; X = [the,woman,shoots,a,man] ; X = [the,woman,shoots] … ?-s(X). X = [the,woman,shoots,the,woman] ; X = [the,woman,shoots,the,man] ; X = [the,woman,shoots,a,woman] ; X = [the,woman,shoots,a,man] ; X = [the,woman,shoots] … ?-s([the,man|X]). X = [the,man,shoots,the,woman] ; X = [the,man,shoots,the,man] ; X = [the,man,shoots,a,woman] … ?-s([the,man|X]). X = [the,man,shoots,the,woman] ; X = [the,man,shoots,the,man] ; X = [the,man,shoots,a,woman] …

6
Lists – CFG with Prolog Question: Add a few rules to the grammar What should we change in the code? Answer: we add the following code s -> np vp np -> det n | det adj n vp -> v np | v det -> a | the n -> woman | man v -> shoots adj -> vicious | marvelous s -> np vp np -> det n | det adj n vp -> v np | v det -> a | the n -> woman | man v -> shoots adj -> vicious | marvelous np(Z) :- det(X), adj(W), n(Y), append([X,W,Y],Z). adj([vicious]). adj([marvelous]). np(Z) :- det(X), adj(W), n(Y), append([X,W,Y],Z). adj([vicious]). adj([marvelous]).

7
Lists – The date Relation In this example we’ll work with dates We assume, for simplicity that a date comprises of a week day and an hour We define the possible week days and hours with lists: week_day(['Sun', 'Mon', 'Tue','Wed','Thu','Fri','Sat']). hour([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]). week_day(['Sun', 'Mon', 'Tue','Wed','Thu','Fri','Sat']). hour([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]).

8
Lists – The date Relation Question: How can we tell if hour 2 is before hour 9? Answer: 1. We can only do so by checking precedence in the lists above 2. A < relation isn’t really possible to implement (There’s a more detailed answer in the PS document) week_day(['Sun', 'Mon', 'Tue','Wed','Thu','Fri','Sat']). hour([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]). week_day(['Sun', 'Mon', 'Tue','Wed','Thu','Fri','Sat']). hour([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]).

9
Lists – The date Relation Some queries: date([H,W]) :- hour(Hour_list), member(H, Hour_list), week_day(Weekday_list), member(W, Weekday_list). dateLT( date([_,W1]), date([_,W2]) ) :- week_day(Weekday_list), precedes(W1,W2,Weekday_list). dateLT( date([H1,W]), date([H2,W]) ) :- hour(Hour_list), precedes(H1,H2,Hour_list). date([H,W]) :- hour(Hour_list), member(H, Hour_list), week_day(Weekday_list), member(W, Weekday_list). dateLT( date([_,W1]), date([_,W2]) ) :- week_day(Weekday_list), precedes(W1,W2,Weekday_list). dateLT( date([H1,W]), date([H2,W]) ) :- hour(Hour_list), precedes(H1,H2,Hour_list). date([1,'Sun']). true dateLT(date([5,'Mon']), date([1,'Tue'])). true date([1,'Sun']). true dateLT(date([5,'Mon']), date([1,'Tue'])). true

10
Lists – The date Relation precedes is defined using append /2 Notice that the first argument is a list of lists This version of append is a strong pattern matcher precedes(X,Y,Z) :- append( [_,[X],_,[Y],_], Z).

11
Lists – Merging date Lists Merge 2 ordered date-lists % Signature: merge(Xs, Ys, Zs)/3 % purpose: Zs is an ordered list of dates obtained % by merging the ordered lists of dates Xs and Ys. merge([X|Xs], [Y|Ys], [X|Zs]) :- dateLT(X,Y), merge(Xs, [Y|Ys],Zs). merge([X|Xs], [X|Ys], [X,X|Zs]) :- merge(Xs, Ys, Zs). merge([X|Xs],[Y|Ys],[Y|Zs]) :- dateLT(Y,X), merge( [X|Xs],Ys, Zs). merge(Xs,[ ], Xs). merge([ ],Ys, Ys). % Signature: merge(Xs, Ys, Zs)/3 % purpose: Zs is an ordered list of dates obtained % by merging the ordered lists of dates Xs and Ys. merge([X|Xs], [Y|Ys], [X|Zs]) :- dateLT(X,Y), merge(Xs, [Y|Ys],Zs). merge([X|Xs], [X|Ys], [X,X|Zs]) :- merge(Xs, Ys, Zs). merge([X|Xs],[Y|Ys],[Y|Zs]) :- dateLT(Y,X), merge( [X|Xs],Ys, Zs). merge(Xs,[ ], Xs). merge([ ],Ys, Ys). ?- merge( [date([5,'Sun']), date([5,'Mon'])], X, [date([2, 'Sun']), date([5,'Sun']), date([5, 'Mon'])]). X = [date([2, 'Sun'])] ?- merge( [date([5,'Sun']), date([5,'Mon'])], X, [date([2, 'Sun']), date([5,'Sun']), date([5, 'Mon'])]). X = [date([2, 'Sun'])]

12
merge([d1,d3,d5],[d2,d3],Xs) { X_1=d1,Xs_1=[d3,d5], Y_1=d2,Ys_1=[d3], Xs=[d1|Zs_1] } Rule 1 dateLT(d1,d2), merge([d3,d5], [d2,d3],Zs_1) true merge([d3,d5], [d3],Zs_2) dateLT(d2,d3), merge([d3,d5], [d3],Zs_2) Rule 2 – failure branch… Rule 1 – failure branch… { X_3=d3,Xs_3=[d5],Ys_3=[], Zs_2=[d3,d3|Zs_3] } Rule 2 Rule 1 – failure branch… merge([d5], [],Zs_3) { Xs_4=[d5], Zs_3=[d5] } Fact 4 Rule 2 – failure branch… Rule 3 – failure branch… { X_2=d3,Xs_2=[d5], Y_2=d2,Ys_2=[d3], Zs_1=[d2|Zs_2] } Rule 3

13
Backtracking Optimization - Cut The cut operator (denoted ‘!’) allows to prune trees from unwanted branches. A cut prunes all the goals below it A cut prunes all alternative solutions of goals to the left of it A cut does not affect the goals to it’s right The cut operator is a goal that always succeeds

15
Example - Merge with Cut In the merge example, only 1 of the 3 first rules can be true. There is no reason to try to others. Modify rule 1: merge([X|Xs],[Y|Ys], [X|Zs]) :- dateLT(X,Y), !, merge (Xs, [Y |Ys],Zs). merge([d1,d3,d5],[d2,d3],Xs) dateLT(d1,d2), !, merge([d3,d5], [d2,d3],Zs_1) !, merge([d3,d5], [d2,d3],Zs_1) Rule 2 – failure branch… Rule 3 – failure branch…

16
Another Example How many results does this query return? Why does this happen? The query fits both rules 4 and 5 How can we avoid this? Add cut to rule 4 ?- merge([],[],X). merge(Xs, [ ],Xs) :- !. X = []; No X = []; No

17
Meta-Circular Interpreters We have seen 3 different interpreters in class Version 1 is trivial We can’t control the computation this way solve( A ) :- A.

18
Interpreter Version 2 clause finds the first rule unifying with A with body B % Signature: solve(Goal)/1 % Purpose: Goal is true if it is true when posed to the original program P. solve(true). solve( (A, B) ) :- solve(A), solve(B). solve(A) :- A\=true, clause(A, B), solve(B). % Signature: solve(Goal)/1 % Purpose: Goal is true if it is true when posed to the original program P. solve(true). solve( (A, B) ) :- solve(A), solve(B). solve(A) :- A\=true, clause(A, B), solve(B). ?- clause( parent(X,isaac),Body). X = abrahamBody = true ?- clause(ancestor(abraham, P),Body). P = Y, Body = parent(abraham, Y) ; P = Z, Body = parent(abraham, Y), ancestor(Y, Z) ?- clause( parent(X,isaac),Body). X = abrahamBody = true ?- clause(ancestor(abraham, P),Body). P = Y, Body = parent(abraham, Y) ; P = Z, Body = parent(abraham, Y), ancestor(Y, Z)

19
{ } Rule 3 solve solve(ancestor(abraham, P)) clause(ancestor(abraham, P), B_1), solve(B_1) {,, } Rule 1 ancestor solve(parent(abraham, P)) { } Rule 3 solve {, } Fact 1 parent solve(parent(abraham,Y_2), ancestor(Y_2, P)) {

20
Interpreter Version 3 In this version we control the goal selection order by using a stack of goals Preprocessing – The given program is converted into a program with a single predicate rule Queries are checked against the new program

21
Interpreter Version 3 Sample converted program: % Signature: solve(Goal)/1 % Purpose: Goal is true if it is true when posed to the original program P. 1. solve(Goal) :- solve(Goal, []). % Signature: solve(Goal, Rest_of_goals)/2 1.solve([],[]). 2.solve([],[G | Goals]):- solve(G, Goals). 3.solve([A|B],Goals):- append(B, Goals, Goals1), solve(A, Goals1). 4.solve( A, Goals) :- rule(A, B), solve(B, Goals). % Signature: solve(Goal)/1 % Purpose: Goal is true if it is true when posed to the original program P. 1. solve(Goal) :- solve(Goal, []). % Signature: solve(Goal, Rest_of_goals)/2 1.solve([],[]). 2.solve([],[G | Goals]):- solve(G, Goals). 3.solve([A|B],Goals):- append(B, Goals, Goals1), solve(A, Goals1). 4.solve( A, Goals) :- rule(A, B), solve(B, Goals). %rule (Head, BodyList)/2 1. rule( member(X, [X|Xs] ), [] ). 2. rule( member(X, [Y|Ys] ), [member(X, Ys)] ).

22
{,,, } Rule 2 rule {,, } Rule 3 rule { } Rule of append {, } Rule 4 solve {,,, } Rule 1 rule { } Rule 1 solve solve(member(X, [a, b, c])) solve(member(X, [a, b, c]), []) {, } Rule 4 solve rule(member(X, [a, b, c], B_2), solve(B_2, [] ) solve([],[]) {,,, } Rule 1 rule true { } Rule 1 solve solve( [member(X, [b,c])], [] ) append([], [], Goals1_4), solve(member(X, [b,c]), Goals1_4). solve(member(X, [b,c]), []). rule(member(X,[b,c]), B_5), solve(B_5, []) solve([],[]) true { } Rule 1 solve

Similar presentations

OK

Constraint Logic Programming Ryan Kinworthy. Overview Introduction Logic Programming LP as a constraint programming language Constraint Logic Programming.

Constraint Logic Programming Ryan Kinworthy. Overview Introduction Logic Programming LP as a constraint programming language Constraint Logic Programming.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on file system in mobile computing Ppt on electricity crisis in india Ppt on law against child marriage statistics Ppt on safe drinking water in india Present ppt on ipad Ppt on company secretary course Ppt on introduction to information security Ppt on my school days Ppt on brain tumor segmentation Upload and view ppt online viewer