# Learning an Attribute Dictionary for Human Action Classification

## Presentation on theme: "Learning an Attribute Dictionary for Human Action Classification"— Presentation transcript:

Learning an Attribute Dictionary for Human Action Classification
Qiang Qiu Qiang Qiu, Zhuolin Jiang, and Rama Chellappa, ”Sparse Dictionary-based Representation and Recognition of Action Attributes”, ICCV 2011

Action Feature Representation
Shape Motion HOG

Action Sparse Representation
Sparse code = 0.64 0.53 -0.40 0.35 0.43 0.63 -0.33 -0.36 Action Dictionary = 0.43 × × × × 0.64× + 0.53× × +0.35 ×

K-SVD K-SVD Input: signals Y, dictionary size, sparisty T
Sparse codes = Y y2 d1 d2 d3 0.64 0.53 -0.40 0.35 0.43 0.63 -0.33 -0.36 x1 x2 y1 D X Input signals Dictionary K-SVD Input: signals Y, dictionary size, sparisty T Output: dictionary D, sparse codes X arg min |Y- DX| s.t i , |xi|0 ≤ T D,X [1] M. Aharon and M. Elad and A. Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionries for Sparse Representation, IEEE Trans. on Signal Process, 2006

Objective Compact Discriminative and Dictionary. Learn a

Probabilistic Model for Sparse Representation
A Gaussian Process Dictionary Class Distribution

More Views of Sparse Representation
= y2 y1 y4 y3 x1 x2 x3 x4 xd1 0.43 0.63 -0.33 -0.36 0.64 0.53 -0.40 0.35 -0.28 0.698 0.37 0.25 -0.42 0.42 0.47 0.32 l1 l2 d1 d2 d3 l1 l2

A Gaussian Process y2 y1 y4 y3 l1 l2 xd1 x1 x2 x3 x4 … xd2 xd3 xd4 xd5
x1 x2 x3 x4 xd2 xd3 xd4 xd5 l1 l1 l2 l2 d1 d2 d3 d4 d5 A Gaussian Process Covariance function entry: K(i,j) = cov(xdi, xdj) P(Xd*|XD*) is a Gaussian with a closed-form conditional variance

Dictionary Class Distribution
xd1 x1 x2 x3 x4 xd2 xd3 xd4 xd5 l1 l1 l2 l2 d1 d2 d3 d4 d5 Dictionary Class Distribution P(L|di), L [1, M] aggregate |xdi| based on class labels to obtain a M sized vector P(L=l1|d5) = ( )/( ) = P(L=l2|d5) = (0+0.42)/( ) = 0.37

Dictionary Learning Approaches
Maximization of Joint Entropy (ME) Maximization of Mutual Information (MMI) Unsupervised Learning (MMI-1) Supervised Learning (MMI-2)

Maximization of Joint Entropy (ME)
- Initialize dictionary using k-SVD Do = - Start with D* = Untill |D*|=k, iteratively choose d* from Do\D*, d* = arg max H(d|D*) d ME dictionary where D A good approximation to ME criteria arg max H(D)

Maximization of Mutual Information for Unsupervised Learning (MMI-1)
- Initialize dictionary using k-SVD Do = - Start with D* = Untill |D*|=k, iteratively choose d* from Do\D*, MMI dictionary d* = arg max H(d|D*) - H(d|Do\(D* d)) d Diversity Coverage Closed form: A near-optimal approximation to MMI arg max I(D; Do\D) within (1-1/e) of the optimum D

Revisit y2 y1 y4 y3 l1 l2 xd1 x1 x2 x3 x4 … xd2 xd3 xd4 xd5
x1 x2 x3 x4 xd2 xd3 xd4 xd5 l1 l1 l2 l2 d1 d2 d3 d4 d5 Revisit Dictionary Class Distribution P(L|di), L [1, M] aggregate|xdi|based on class labels to obtain a M sized vector P(l1|d5) = ( )/( ) = P(l2|d5) = (0+0.42)/( ) = 0.37 P(Ld) = P(L|d) P(LD) = P(L|D) , where

Maximization of Mutual Information for Supervised Learning (MMI-2)
- Initialize dictionary using k-SVD Do = - Start with D* = Untill |D*|=k, iteratively choose d* from Do\D*, d d* = arg max [H(d|D*) - H(d|Do\(D* d))] + λ[H(Ld|LD*) – H(Ld|LDo\(D* d))] - MMI-1 is a special case of MMI-2 with λ=0.

Keck gesture dataset

Representation Consistency
[1] [1] J. Liu and M. Shah, Learning Human Actions via Information Maximization, CVPR 2008

Recognition Accuracy The recognition accuracy using initial dictionary Do: (a) 0.23 (b) 0.42 (c) 0.71

Recognizing Realistic Actions
150 broadcast sports videos. 10 different actions. Average recognition rate: 83:6% Best reported result 86.6%