Download presentation

Presentation is loading. Please wait.

Published byRiya McLean Modified about 1 year ago

1
10.4 Ellipses p. 609

2
An ellipse is a set of points such that the distance between that point and two fixed points called Foci remains constant d1 d2 d3 d4 d1 + d2 = d3 + d4 f1f2

3
cv 1 cv 2 v1v1 v2v2 c F1F1 F2F2

4
The line that goes through the Foci is the Major Axis. The midpoint of that segment between the foci is the Center of the ellipse (c) The intersection of the major axis and the ellipse itself results in two points, the Vertices (v) The line that passes through the center and is perpendicular to the major axis is called the Minor Axis The intersection of the minor axis and the ellipse results in two points known as co-vertices

5
Example of ellipse with vertical major axis

6
Example of ellipse with horizontal major axis

7
Standard Form for Elliptical Equations Equation Major Axis (length is 2a) Minor Axis (length is 2b) Vertices Co- Vertices HorizontalVertical (a,0) (-a,0)(0,b) (0,-b) VerticalHorizontal (0,a) (0,-a)(b,0) (-b,0) Note that a is the biggest number!!!

8
The foci lie on the major axis at the points: (c,0) (-c,0) for horizontal major axis (0,c) (0,-c) for vertical major axis Where c 2 = a 2 – b 2

9
Write the equation of an ellipse with center (0,0) that has a vertex at (0,7) & co-vertex at (-3,0) Since the vertex is on the y axis (0,7) a=7 The co-vertex is on the x-axis (-3,0) b=3 The ellipse has a vertical major axis & is of the form

10
Given the equation 9x y 2 = 144 Identify: foci, vertices, & co-vertices First put the equation in standard form:

11
From this we know the major axis is horizontal & a=4, b=3 So the vertices are (4,0) & (-4,0) the co-vertices are (0,3) & (0,-3) To find the foci we use c 2 = a 2 – b 2 c 2 = 16 – 9 c = √7 So the foci are at (√7,0) (-√7,0)

12
Assignment

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google