Download presentation

Presentation is loading. Please wait.

1
**9.4: Inequalities and Absolute Value**

÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× × ÷ × ÷ 9.4: Inequalities and Absolute Value Pilar Alcazar Period 1 ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

2
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Equation: |3x+2/4|≤ 5 Since there is a fraction with a denominator of 4, you need to multiply both sides of the equation by 4 or 4/1. Also, the absolute value means you need to do a positive and negative version of the equation. 3x+2/4≤ 5 | 3x+2/4 ≥ -5 x4/1 x4 | x4 x4 ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

3
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Equation: |3x+2/4|≤ 5 2. Now, you need to subtract 2 from both sides of the equation because there is a 2 added onto the 3x. Add 2 to both sides of the second equation because the 2 is negative. 3x+2≤ 20 | 3x+2≥ | -2 -2 ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

4
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Equation: |3x+2/4|≤ 5 3. Now you want to get the x all by itself. You need to divide both sides by 3 to isolate x. In the second equation, divide both sides by negative three and flip the sign from ≥ to ≤. 3x≤ 18 | 3x≥ -22 ÷3 ÷3 | ÷3 ÷3 ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

5
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Equation: |3x+2/4|≤ 5 4. Since x is now isolated, you are finished with the equation. x ≤ 6 | x ≥ -22/3 Answer: {x|-22/3≤x≤6} ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

6
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Critical Thinking: Write an absolute value inequality to describe each of the graphs below. ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

7
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Since the graph only goes to -4 and 2, the inequality would be {x|-4≤x≤2}. ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

8
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Since the graph is less than -2 or greater than 3, the inequality would be {x|x<-2 or x>3}. ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

9
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Equation: |2b-4|< -5 1. Since this is an absolute value equation, you need to write it in a positive and negative form. 2b-4< -5 | 2b-4> 5 ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

10
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Equation: |2b-4|< -5 2. Now you need to isolate the number that is multiplied onto b and b itself by either adding or subtracting. 2b-4< | 2b-4> 5 | ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

11
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Equation: |2b-4|< -5 3. Now you need to isolate b by dividing by the number that is multiplied onto it. 2b<-1 | 2b>9 ÷2 ÷2 | ÷2 ÷2 ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

12
**÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷× ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×**

Equation: |2b-4|< -5 Now that b is by itself, you have your answer. b<-1/ | b>9/2 Answer: {b|b<-1/2 or b>9/2} If you go back and plug the answer in, you find out that these solutions do not validate. Therefore, there is no solution. ÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×÷×

13
Thanks for Watching!

Similar presentations

OK

What is an Equation An equation is an expression with an ‘equal’ sign and another expression. EXAMPLE: x + 5 = 4 2x – 6 = 13 There is a Left.

What is an Equation An equation is an expression with an ‘equal’ sign and another expression. EXAMPLE: x + 5 = 4 2x – 6 = 13 There is a Left.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on earthquake in bhuj Ppt on object-oriented programming concepts php Ppt on social networking addiction Ppt on carburetor systems Ppt on beer lambert law extinction Ppt on polynomials download games Ppt on synthesis and degradation of purines and pyrimidines size Ppt on cross docking logistics Ppt on 10 sikh gurus name Ppt on endangered animals and plants