Presentation is loading. Please wait.

Presentation is loading. Please wait.

Doc.: IEEE 802.11-04/1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 Performance of Circulation Transmission (Sub_BC)

Similar presentations


Presentation on theme: "Doc.: IEEE 802.11-04/1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 Performance of Circulation Transmission (Sub_BC)"— Presentation transcript:

1 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 Performance of Circulation Transmission (Sub_BC) in 20MHz and 40MHz MIMO Systems Jeng-Hong Chen Pansop Kim Winbond Wireless Design Center Torrance, CA, USA October 2004 (Other documents: IEEE 04/934r2, 04/1026r0, 04/1105/r0, 04/1163r1)

2 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 2 Generalized Sub-Carrier Based Circulation (Sub_BC)

3 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 3 Summary I: Alamouti or SMX v.s. CSMX (Sub_BC) Sub_BC outperforms Alamouti (Rate=1) in PER Sub_BC without one OFDM symbol decoding (STBC) delay The transmit diversity gain (up to 8dB at 10% PER or more at 1% PER in channel B) from CSMX over SMX will –reduce the required high EVM at TX –reduce the required high SNR at RX Sub_BC can be implemented to 2xN Alamouti (Rate=1) –For example: 2xN ALA v.s. 2(M)xN CALA in 04/934r2. Rate 4(M)xN, M>4 can be implemented to relax the required SNR to support high data rates with four spatial streams if necessary.

4 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 4 Summary II: Sub_BC v.s. Beamforming (BF) Do not require feedback of CSI from RX to TX Do not require that the channel is reciprocal All MAC/PHY feedback modes required for BF in IEEE-04/889r0 can be eliminated. Simpler MAC without feedback modes greatly improves the MAC efficiency (i.e., throughput) and complexity.

5 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 5 Simulation Results Part I: 20MHz, 48 data subcarriers, 3D Interleaver –I.1.1: Alamouti v.s. 1(M) CSMX, channel B –I.1.2: Alamouti v.s. 1(M) CSMX, channel E –I.2.1: SMX v.s. CSMX, channel B –I.2.2: SMX v.s. CSMX, channel E Part II: 40MHz, 108 data subcarriers, 3D-A Interleaver –II.1.1: Alamouti v.s. 1(M) CSMX, channel B –II.1.2: Alamouti v.s. 1(M) CSMX, channel E –II.2.1: SMX v.s. CSMX, channel B –II.2.2: SMX v.s. CSMX, channel E

6 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 6 Part I.1.1: Alamouti vs. 1(M) CSMX, channel B 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation

7 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 7 2x2 Alamouti vs. 1(M)x2 CSMX

8 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 8 2x3 Alamouti vs. 1(M)x3 CSMX 1(M) Circulation is easy to implement PER performance of 1(M)xN Circulation is better than 2xN ALA.

9 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 9 2x4 Alamouti vs. 1(M)x4 CSMX

10 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 10 Part I.1.2: Alamouti vs. 1(M) CSMX, channel E 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation

11 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 11 2x2 Alamouti vs. 1(M)x2 CSMX

12 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 12 2x3 Alamouti vs. 1(M)x3 CSMX

13 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 13 2x4 Alamouti vs. 1(M)x4 CSMX

14 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 14 Part I.2.1: SMX vs. CSMX, channel B 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate TX Ant. RX Ant. Circulation

15 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 15 2(M)X2 CSMX

16 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 16 2(M)X3 CSMX

17 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 17 2(M)X4 CSMX

18 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 18 3(M)X3 CSMX

19 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 19 3(M)X4 CSMX

20 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 20 Part I.2.2: SMX vs. CSMX, channel E 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 20MHz, 3D interleaver RX Ant. Rate TX Ant. RX Ant. Circulation

21 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 21 2(M)X2 CSMX

22 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 22 2(M)X3 CSMX

23 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 23 2(M)X4 CSMX

24 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 24 3(M)X3 CSMX

25 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 25 3(M)X4 CSMX

26 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 26 Part II.1.1: Alamouti vs. 1(M) CSMX, channel B 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation

27 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 27 2x2 Alamouti vs. 1(M)x2 CSMX

28 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 28 2x3 Alamouti vs. 1(M)x3 CSMX

29 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 29 2x4 Alamouti vs. 1(M)x4 CSMX

30 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 30 Part II.1.2: Alamouti vs. 1(M) CSMX, channel E 2x2 Alamouti vs. 1(M)x2 CSMX 2x3 Alamouti vs. 1(M)x3 CSMX 2x4 Alamouti vs. 1(M)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate=1 Rate=1 TX Ant. RX Ant. Circulation

31 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 31 2x2 Alamouti vs. 1(M)x2 CSMX

32 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 32 2x3 Alamouti vs. 1(M)x3 CSMX

33 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 33 2x4 Alamouti vs. 1(M)x4 CSMX

34 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 34 Part II.2.1: SMX vs. CSMX, channel B 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate TX Ant. RX Ant. Circulation

35 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 35 2(M)X2 CSMX

36 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 36 2(M)X3 CSMX

37 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 37 2(M)X4 CSMX

38 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 38 3(M)X3 CSMX

39 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 39 3(M)X4 CSMX

40 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 40 Part II.2.2: SMX vs. CSMX, channel E 2x2 SMX vs. 2(3)x2, 2(4)x2 CSMX 2x3 SMX vs. 2(3)x3, 2(4)x3 CSMX 2x4 SMX vs. 2(3)x4, 2(4)x4 CSMX 3x3 SMX vs. 3(4)x3 CSMX 3x4 SMX vs. 3(4)x4 CSMX 40MHz, 3D-A interleaver RX Ant. Rate TX Ant. RX Ant. Circulation

41 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 41 2(M)X2 CSMX

42 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 42 2(M)X3 CSMX

43 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 43 2(M)X4 CSMX

44 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 44 3(M)X3 CSMX

45 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 45 3(M)X4 CSMX

46 doc.: IEEE /1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 46 Thank you!! The dream of 11n greedy data rates comes at extreme cost of required SNR (EVM) if challenged in the real MIMO channels. The proposed circulation transmission explores optimal antenna diversities without feedback, relax the required SNR, and make the speedy dream come true.


Download ppt "Doc.: IEEE 802.11-04/1212r0 Submission October Jeng-Hong Chen, Pansop Kim, Winbond ElectronicsSlide 1 Performance of Circulation Transmission (Sub_BC)"

Similar presentations


Ads by Google