Download presentation

Presentation is loading. Please wait.

Published byRodney Rideout Modified over 3 years ago

1
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS ST. EDWARD’S UNIVERSITY

2
2 2 Slide © 2005 Thomson/South-Western Chapter 4 Linear Programming Applications n Blending Problem n Portfolio Planning Problem n Product Mix Problem

3
3 3 Slide © 2005 Thomson/South-Western Blending Problem Ferdinand Feed Company receives four raw grains from which it blends its dry pet food. The pet food advertises that each 8-ounce packet meets the minimum daily requirements for vitamin C, protein and iron. The cost of each raw grain as well as the vitamin C, protein, and iron units per pound of each grain are summarized on the next slide.

4
4 4 Slide © 2005 Thomson/South-Western Blending Problem Vitamin C Protein Iron Vitamin C Protein Iron Grain Units/lb Units/lb Units/lb Cost/lb Grain Units/lb Units/lb Units/lb Cost/lb 1 9 12 0.75 1 9 12 0.75 2 16 10 14.90 2 16 10 14.90 3 8 10 15.80 3 8 10 15.80 4 10 8 7.70 Ferdinand is interested in producing the 8-ounce mixture at minimum cost while meeting the minimum daily requirements of 6 units of vitamin C, 5 units of protein, and 5 units of iron.

5
5 5 Slide © 2005 Thomson/South-Western Blending Problem n Define the decision variables x j = the pounds of grain j ( j = 1,2,3,4) x j = the pounds of grain j ( j = 1,2,3,4) used in the 8-ounce mixture used in the 8-ounce mixture n Define the objective function Minimize the total cost for an 8-ounce mixture: Minimize the total cost for an 8-ounce mixture: MIN.75 x 1 +.90 x 2 +.80 x 3 +.70 x 4 MIN.75 x 1 +.90 x 2 +.80 x 3 +.70 x 4

6
6 6 Slide © 2005 Thomson/South-Western Blending Problem Define the constraints Define the constraints Total weight of the mix is 8-ounces (.5 pounds): (1) x 1 + x 2 + x 3 + x 4 =.5 (1) x 1 + x 2 + x 3 + x 4 =.5 Total amount of Vitamin C in the mix is at least 6 units: (2) 9 x 1 + 16 x 2 + 8 x 3 + 10 x 4 > 6 (2) 9 x 1 + 16 x 2 + 8 x 3 + 10 x 4 > 6 Total amount of protein in the mix is at least 5 units: (3) 12 x 1 + 10 x 2 + 10 x 3 + 8 x 4 > 5 (3) 12 x 1 + 10 x 2 + 10 x 3 + 8 x 4 > 5 Total amount of iron in the mix is at least 5 units: (4) 14 x 2 + 15 x 3 + 7 x 4 > 5 (4) 14 x 2 + 15 x 3 + 7 x 4 > 5 Nonnegativity of variables: x j > 0 for all j

7
7 7 Slide © 2005 Thomson/South-Western n The Management Scientist Output OBJECTIVE FUNCTION VALUE = 0.406 OBJECTIVE FUNCTION VALUE = 0.406 VARIABLE VALUE REDUCED COSTS VARIABLE VALUE REDUCED COSTS X1 0.099 0.000 X1 0.099 0.000 X2 0.213 0.000 X2 0.213 0.000 X3 0.088 0.000 X3 0.088 0.000 X4 0.099 0.000 X4 0.099 0.000 Thus, the optimal blend is about.10 lb. of grain 1,.21 lb. of grain 2,.09 lb. of grain 3, and.10 lb. of grain 4. The mixture costs Frederick’s 40.6 cents. Blending Problem

8
8 8 Slide © 2005 Thomson/South-Western Portfolio Planning Problem Winslow Savings has $20 million available for investment. It wishes to invest over the next four months in such a way that it will maximize the total interest earned over the four month period as well as have at least $10 million available at the start of the fifth month for a high rise building venture in which it will be participating.

9
9 9 Slide © 2005 Thomson/South-Western Portfolio Planning Problem For the time being, Winslow wishes to invest only in 2-month government bonds (earning 2% over the 2-month period) and 3-month construction loans (earning 6% over the 3-month period). Each of these is available each month for investment. Funds not invested in these two investments are liquid and earn 3/4 of 1% per month when invested locally.

10
10 Slide © 2005 Thomson/South-Western Portfolio Planning Problem Formulate a linear program that will help Winslow Savings determine how to invest over the next four months if at no time does it wish to have more than $8 million in either government bonds or construction loans.

11
11 Slide © 2005 Thomson/South-Western Portfolio Planning Problem n Define the decision variables g j = amount of new investment in g j = amount of new investment in government bonds in month j government bonds in month j c j = amount of new investment in construction loans in month j c j = amount of new investment in construction loans in month j l j = amount invested locally in month j, l j = amount invested locally in month j, where j = 1,2,3,4 where j = 1,2,3,4

12
12 Slide © 2005 Thomson/South-Western Portfolio Planning Problem n Define the objective function Maximize total interest earned over the 4-month period. Maximize total interest earned over the 4-month period. MAX (interest rate on investment)(amount invested) MAX (interest rate on investment)(amount invested) MAX.02 g 1 +.02 g 2 +.02 g 3 +.02 g 4 MAX.02 g 1 +.02 g 2 +.02 g 3 +.02 g 4 +.06 c 1 +.06 c 2 +.06 c 3 +.06 c 4 +.0075 l 1 +.0075 l 2 +.0075 l 3 +.0075 l 4 +.0075 l 1 +.0075 l 2 +.0075 l 3 +.0075 l 4

13
13 Slide © 2005 Thomson/South-Western Portfolio Planning Problem n Define the constraints Month 1's total investment limited to $20 million: Month 1's total investment limited to $20 million: (1) g 1 + c 1 + l 1 = 20,000,000 (1) g 1 + c 1 + l 1 = 20,000,000 Month 2's total investment limited to principle and interest invested locally in Month 1: Month 2's total investment limited to principle and interest invested locally in Month 1: (2) g 2 + c 2 + l 2 = 1.0075 l 1 (2) g 2 + c 2 + l 2 = 1.0075 l 1 or g 2 + c 2 - 1.0075 l 1 + l 2 = 0

14
14 Slide © 2005 Thomson/South-Western Portfolio Planning Problem n Define the constraints (continued) Month 3's total investment amount limited to principle and interest invested in government bonds in Month 1 and locally invested in Month 2: (3) g 3 + c 3 + l 3 = 1.02 g 1 + 1.0075 l 2 (3) g 3 + c 3 + l 3 = 1.02 g 1 + 1.0075 l 2 or - 1.02 g 1 + g 3 + c 3 - 1.0075 l 2 + l 3 = 0

15
15 Slide © 2005 Thomson/South-Western Portfolio Planning Problem n Define the constraints (continued) Month 4's total investment limited to principle and interest invested in construction loans in Month 1, goverment bonds in Month 2, and locally invested in Month 3: (4) g 4 + c 4 + l 4 = 1.06 c 1 + 1.02 g 2 + 1.0075 l 3 (4) g 4 + c 4 + l 4 = 1.06 c 1 + 1.02 g 2 + 1.0075 l 3 or - 1.02 g 2 + g 4 - 1.06 c 1 + c 4 - 1.0075 l 3 + l 4 = 0 $10 million must be available at start of Month 5: (5) 1.06 c 2 + 1.02 g 3 + 1.0075 l 4 > 10,000,000 (5) 1.06 c 2 + 1.02 g 3 + 1.0075 l 4 > 10,000,000

16
16 Slide © 2005 Thomson/South-Western Portfolio Planning Problem n Define the constraints (continued) No more than $8 million in government bonds at any time: (6) g 1 < 8,000,000 (6) g 1 < 8,000,000 (7) g 1 + g 2 < 8,000,000 (7) g 1 + g 2 < 8,000,000 (8) g 2 + g 3 < 8,000,000 (8) g 2 + g 3 < 8,000,000 (9) g 3 + g 4 < 8,000,000 (9) g 3 + g 4 < 8,000,000

17
17 Slide © 2005 Thomson/South-Western Portfolio Planning Problem n Define the constraints (continued) No more than $8 million in construction loans at any time: (10) c 1 < 8,000,000 (10) c 1 < 8,000,000 (11) c 1 + c 2 < 8,000,000 (11) c 1 + c 2 < 8,000,000 (12) c 1 + c 2 + c 3 < 8,000,000 (12) c 1 + c 2 + c 3 < 8,000,000 (13) c 2 + c 3 + c 4 < 8,000,000 (13) c 2 + c 3 + c 4 < 8,000,000 Nonnegativity: g j, c j, l j > 0 for j = 1,2,3,4

18
18 Slide © 2005 Thomson/South-Western Product Mix Problem Floataway Tours has $420,000 that can be used to purchase new rental boats for hire during the summer. The boats can be purchased from two different manufacturers. Floataway Tours would Floataway Tours would like to purchase at least 50 boats and would like to purchase the same number from Sleekboat as from Racer to maintain goodwill. At the same time, Floataway Tours wishes to have a total seating capacity of at least 200.

19
19 Slide © 2005 Thomson/South-Western Formulate this problem as a linear program. Maximum Expected Maximum Expected Boat Builder Cost Seating Daily Profit Boat Builder Cost Seating Daily Profit Speedhawk Sleekboat $6000 3 $ 70 Silverbird Sleekboat $7000 5 $ 80 Catman Racer $5000 2 $ 50 Classy Racer $9000 6 $110 Product Mix Problem

20
20 Slide © 2005 Thomson/South-Western n Define the decision variables x 1 = number of Speedhawks ordered x 1 = number of Speedhawks ordered x 2 = number of Silverbirds ordered x 2 = number of Silverbirds ordered x 3 = number of Catmans ordered x 3 = number of Catmans ordered x 4 = number of Classys ordered x 4 = number of Classys ordered n Define the objective function Maximize total expected daily profit: Maximize total expected daily profit: Max: (Expected daily profit per unit) Max: (Expected daily profit per unit) x (Number of units) x (Number of units) Max: 70 x 1 + 80 x 2 + 50 x 3 + 110 x 4 Product Mix Problem

21
21 Slide © 2005 Thomson/South-Western n Define the constraints (1) Spend no more than $420,000: 6000 x 1 + 7000 x 2 + 5000 x 3 + 9000 x 4 < 420,000 6000 x 1 + 7000 x 2 + 5000 x 3 + 9000 x 4 < 420,000 (2) Purchase at least 50 boats: (2) Purchase at least 50 boats: x 1 + x 2 + x 3 + x 4 > 50 x 1 + x 2 + x 3 + x 4 > 50 (3) Number of boats from Sleekboat equals number of boats from Racer: (3) Number of boats from Sleekboat equals number of boats from Racer: x 1 + x 2 = x 3 + x 4 or x 1 + x 2 - x 3 - x 4 = 0 x 1 + x 2 = x 3 + x 4 or x 1 + x 2 - x 3 - x 4 = 0 Product Mix Problem

22
22 Slide © 2005 Thomson/South-Western n Define the constraints (continued) (4) Capacity at least 200: 3 x 1 + 5 x 2 + 2 x 3 + 6 x 4 > 200 3 x 1 + 5 x 2 + 2 x 3 + 6 x 4 > 200 Nonnegativity of variables: Nonnegativity of variables: x j > 0, for j = 1,2,3,4 x j > 0, for j = 1,2,3,4 Product Mix Problem

23
23 Slide © 2005 Thomson/South-Western n Complete Formulation Max 70 x 1 + 80 x 2 + 50 x 3 + 110 x 4 s.t. 6000 x 1 + 7000 x 2 + 5000 x 3 + 9000 x 4 < 420,000 6000 x 1 + 7000 x 2 + 5000 x 3 + 9000 x 4 < 420,000 x 1 + x 2 + x 3 + x 4 > 50 x 1 + x 2 + x 3 + x 4 > 50 x 1 + x 2 - x 3 - x 4 = 0 x 1 + x 2 - x 3 - x 4 = 0 3 x 1 + 5 x 2 + 2 x 3 + 6 x 4 > 200 3 x 1 + 5 x 2 + 2 x 3 + 6 x 4 > 200 x 1, x 2, x 3, x 4 > 0 x 1, x 2, x 3, x 4 > 0 Product Mix Problem

24
24 Slide © 2005 Thomson/South-Western n Partial Spreadsheet Showing Problem Data Product Mix Problem

25
25 Slide © 2005 Thomson/South-Western n Partial Spreadsheet Showing Solution Product Mix Problem

26
26 Slide © 2005 Thomson/South-Western n Solution Summary Purchase 28 Speedhawks from Sleekboat. Purchase 28 Speedhawks from Sleekboat. Purchase 28 Classy’s from Racer. Purchase 28 Classy’s from Racer. Total expected daily profit is $5,040.00. Total expected daily profit is $5,040.00. The minimum number of boats was exceeded by 6 (surplus for constraint #2). The minimum number of boats was exceeded by 6 (surplus for constraint #2). The minimum seating capacity was exceeded by 52 (surplus for constraint #4). The minimum seating capacity was exceeded by 52 (surplus for constraint #4). Product Mix Problem

27
27 Slide © 2005 Thomson/South-Western n Sensitivity Report Product Mix Problem

28
28 Slide © 2005 Thomson/South-Western n Sensitivity Report Product Mix Problem

Similar presentations

OK

1 1 Slide Chapter 14: Goal Programming Goal programming is used to solve linear programs with multiple objectives, with each objective viewed as a "goal".

1 1 Slide Chapter 14: Goal Programming Goal programming is used to solve linear programs with multiple objectives, with each objective viewed as a "goal".

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Download ppt on cell structure and function for class 8 Ppt on information security and cryptography Ppt on earth movements and major landforms in germany Ppt on diffusion taking place in our daily life Ppt on oxidation and reduction for class 10 Download ppt on natural resources for class 10 Ppt on tungsten inert gas welding Ppt on ocean food web Ppt on area of parallelogram with vectors Ppt on linker and loader