Presentation is loading. Please wait.

Presentation is loading. Please wait.

Multi-GPU and Stream Programming Kishan Wimalawarne.

Similar presentations

Presentation on theme: "Multi-GPU and Stream Programming Kishan Wimalawarne."— Presentation transcript:

1 Multi-GPU and Stream Programming Kishan Wimalawarne

2 Agenda Memory Stream programming Multi-GPU programming UVA & GPUDirect

3 Memory Paged locked memory (Pinned memory) – Useful in concurrent kernel execution – Use cudaHostAlloc() and cudaFreeHost() allocate and free page-locked host memory Mapped memory – A block of page-locked host memory can also be mapped into the address space of the device by passing flag cudaHostAllocMapped to cudaHostAlloc()

4 Zero-Copy Zero-Copy enables GPU threads to directly access host memory. Requires mapped pinned (non-pageable) memory. Zero copy can be used in place of streams because kernel-originated data transfers automatically overlap kernel execution without the overhead of setting up and determining the optimal number of streams Use cudaSetDeviceFlags() with cudaDeviceMapHost()

5 Zero-Copy

6 Stream Programming

7 Introduction Stream programming (pipeline) is a useful parallel pattern. Data transfer from host to device is a major performance bottleneck in GPU programming CUDA provides support for asynchronous data transfer and kernel executions. A stream is simply a sequence of operations that are performed in order on the device. Allow concurrent execution of kernels. Maximum number of concurrent kernel calls to be launched is 16.

8 Introduction

9 Asynchronous memory Transfer Use cudaMemcpyAsync() instead of cudaMemcpy(). cudaMemcpyAsync() – non-blocking data transfer method uses pinned host memory. cudaError_t cudaMemcpyAsync ( void * dst, const void * src, size_t count, enum cudaMemcpyKind, cudaStream_t stream)

10 Stream Structures cudaStream_t – Sepcifies a stream in a CUDA program cudaStreamCreate(cudaStream_t * stm) – Instantiate streams

11 Streaming example

12 Event processing Events are used for – Monitor device behavior – Accurate rate timing cudaEvent_t e cudaEventCreate(&e); cudaEventDestroy(e);

13 Event processing cudaEventRecord() records and event associated with a stream. cudaEventElapsedTime() finds the time between two input events. cudaEventSynchronize() blocks until the event has actually been recorded cudaEventQuery() Check status of an event. cudaStreamWaitEvent() makes all future work submitted to stream wait until event reports completion before beginning execution. cudaEventCreateWithFlags() create events with flags e.g:- cudaEventDefault, cudaEventBlockingSync

14 Stream Synchronization cudaDeviceSynchronize() waits until all preceding commands in all streams of all host threads have completed. cudaStreamSynchronize() takes a stream as a parameter and waits until all preceding commands in the given stream have completed cudaStreamWaitEvent() takes a stream and an event as parameters and makes all the commands added to the given stream after the call to cudaStreamWaitEvent() delay their execution until the given event has completed. cudaStreamQuery() provides applications with a way to know if all preceding commands in a stream have completed.

15 Multi GPU programming


17 Multiple device access cudaSetDevice(devID) – Devise selection within the code by specifying the identifier and making CUDA kernels run on the selected GPU.

18 Peer to peer memory Access Peer-to-Peer Memory Access – Only on Tesla or above – cudaDeviceEnablePeerAccess() to check peer access

19 Peer to peer memory Copy Using cudaMemcpyPeer() – works for Geforce 480 and other GPUs.

20 Programming multiple GPUs The most efficient way to use multiple GPUs is to use host threads for multiple GPUs and divide the work among them. – E.g- pthreads Need to combine the parallelism of multi-core processor to in conjunction with multiple GPU's. In each thread use cudaSetDevice() to specify the device to run.

21 Multiple GPU For each computation on GPU create a separate thread and specify the device a CUDA kernel should run. Synchronize both CPU threads and GPU.

22 Multiple GPU Example void * GPUprocess(void *id){ long tid; tid = (long)id; if(tid ==0){ cudaSetDevice(tid); cudaMalloc((void **)&p2, size); cudaMemcpy(p2, p0, size, cudaMemcpyHostToDevice ); test >>(p2,tid +2); cudaMemcpy(p0,p2, size, cudaMemcpyDeviceToHost ); }else if(tid ==1){ cudaSetDevice(tid); cudaMalloc((void **)&p3, size); cudaMemcpy(p3, p1, size, cudaMemcpyHostToDevice ); test >>(p3,tid +2); cudaMemcpy(p1,p3, size, cudaMemcpyDeviceToHost ); }

23 Multiple GPU Example #include int NUM_THREADS=2; pthread_t thread[NUM_THREADS]; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); for(t=0; t

24 Unified Virtual Address Space (UVA) 64-bit process on Windows Vista/7 in TCC mode (only on Tesla)

25 GPUDirect Build on UVA for Tesla (fermi) products.

26 GPUDirect

Download ppt "Multi-GPU and Stream Programming Kishan Wimalawarne."

Similar presentations

Ads by Google