Presentation is loading. Please wait.

Presentation is loading. Please wait.

Seismic Analysis Code (SAC)

Similar presentations

Presentation on theme: "Seismic Analysis Code (SAC)"— Presentation transcript:


2 Seismic Analysis Code (SAC)
Basic Data Manipulation

3 SAC Seismic Analysis Code was developed at Lawrence Livermore National Laboratory and University of California in the early 1980's. It is a command-driven program generally implemented on many types of UNIX operating systems and has become a standard data manipulation tool in seismology. Its binary data format is one of the principle data formats used today in storing and manipulating seismological time series data.

4 SAC was designed as an aid to research seismologists in the study of seismic events. As such, it is used for quick preliminary analyses, for routine processing, for testing new techniques, for detailed research, and for creating publication quality graphics. ceri% sac SEISMIC ANALYSIS CODE [09/04/2008 (Version 101.2)] Copyright 1995 Regents of the University of California SAC>

5 What can it do? Interactively read seismogram data
Perform many standard data processing operations, such as Filtering Time picks Amplitude picks Correlation Fourier transforms Seismic instrument corrections Particle motion rotation Trace envelopes Spectral ratios Linear regressions Frequency-wavenumber analysis Create a variety of plots of the data and resulting analysis

6 SAC’s competitors (analysis)
Various versions of DATASCOPE (now Antelope) MATSEIS/Coral other Matlab based programs SEISAN XPICK Seismic UNIX others

7 SAC’s competitors (data format)
SEED (Standard for the Exchange of Earthquake Data) SEISAN (widely used in Central and South America/Europe) CSS (Center for Seismic Studies, associated with treaty verification) SUDS (Seismic Unified Data System, from Willie Lee PC based system/USGS) SEG-Y (the standard for seismic reflection data) AH (Ad Hoc, pre-SEED shows up from AVO/HVO, etc. in archives) Others (new ones crop up every 5-10 years to address the chaotic state of affairs.)

8 Commands SAC commands fall into three main categories
Parameter-setting: change values of internal SAC parameters Action-producing: perform some operation on the signals currently in selected memory based upon the values of these parameters Data-set: determine which files are in active (selected) memory and therefore will be acted upon

9 Commands HELP calls up a list of all commands
help command can be used to view manual pages

10 Defaults In order to make SAC quick to learn and easy to use, default values for all operational parameters were carefully chosen. At the same time, almost all of these parameters are under direct user control. SAC can be reinitialized to this default state at any time by executing the INICM command.

11 Data Format and Header Each signal or seismogram is stored in a separate binary or alphanumeric data file. SAC can read data in a variety of formats: SAC Binary Format (most common) CSS format SDD format ASCII formats Each data file contains a header that describes the contents of that file.

12 listhdr (lh): lists the headers of the files in memory.
SAC> listhdr FILE: ccm_sumatra_.bhe - 1 NPTS = B = e+00 E = e+04 IFTYPE = TIME SERIES FILE LEVEN = TRUE DELTA = e-02 IDEP = UNKNOWN DEPMIN = e+06 DEPMAX = e+06 DEPMEN = e+02 OMARKER = (origin ) KZDATE = DEC 26 (361), 2004 KZTIME = 01:09:52.684 IZTYPE = BEGIN TIME KSTNM = CCM CMPAZ = e+01 CMPINC = e+01 STLO = e+01 DIST = e+03 AZ = e+02 BAZ = e+02 LOVROK = TRUE NVHDR = 6 LPSPOL = TRUE LCALDA = TRUE KCMPNM = BHE KNETWK = US listhdr (lh): lists the headers of the files in memory.

13 Time The SAC header contains a reference or zero time, stored as six integers (NZYEAR, NZJDAY, NZHOUR, NZMIN, NZSEC, NZMSEC), but normally printed in an equivalent alphanumeric format (KZDATE and KZTIME). SAC> lh #list header FILE: GRAT.EHZ.NM – 1 #this is a partial header NPTS = B = e+00 E = e+03 IFTYPE = TIME SERIES FILE DELTA = e-02 KZDATE = APR 06 (097), 2008 KZTIME = 02:59:59.320

14 Event and Station Info SAC header can store station and event info
SAC> lh FILE: WMQ.BHZ.D : KSTNM = WMQ STLA = e+01 STLO = e+01 STEL = e+02 EVLA = e+00 EVLO = e+01 EVDP = e+01

15 Once the event and station information are store, the program automatically calculates and stores distance (km), azimuth (degrees), backazimuth (degrees), and great circle arc length (degrees) DIST = e+03 AZ = e+02 BAZ = e+02 GCARC = e+01

16 Phase Info SAC can be used to pick and store phase information in header variables A & T0-T9. The Omarker is reserved to for the origin time. All pick and origin times are stored in secs from the zero time of the file. OMARKER = 0 AMARKER #not set in this example T0MARKER #not set in this example T1MARKER = (P) T2MARKER = (S) T4MARKER = (pP) T6MARKER = (sP)

17 Data File Command Module
This module is used to read, write, and access SAC data files. READ (r): reads data files from disk into memory SAC> r *.SAC #read any files that end in .SAC Uses standard UNIX wildcards: reads all files whose filenames end in “.SAC”

18 Data File Command Module
WRITE (w): writes the data currently in memory to disk You can write manipulated data into a range of file formats or simply overwrite the current set of files (so be careful, you have been warned!)

19 Let’s try it (and also jump ahead to graphics action module to plot (“p”) it) –
SEISMIC ANALYSIS CODE [8/8/2001 (Version )] Copyright 1995 Regents of the University of California SAC> read ccm_sumatra_.bhz SAC> plot

20 Let’s try it (and also jump ahead to graphics action module to plot (“p”) it) –
SEISMIC ANALYSIS CODE [09/04/2008 (Version 101.2)] Copyright 1995 Regents of the University of California SAC> read ccm_sumatra_.bhz SAC> plot

21 This seismogram is 20,000 seconds long, with samples 20 times per second.
It has over 3,890,000 points and would take almost an hour to draw at 9600 baud, which was the rate of computers when SAC originally written.

22 Enter QDP (Quick and Dirty Plot mode) to the rescue.
Look at the lower right corner. There is a box there with the number 779. This tells us that SAC is displaying every 779th point (that’s one point every 39 seconds).

23 Since we are on a modern computer we can afford to plot all the data
So we turn the QDP “feature” off SAC> qdp off SAC> plot This plot is now “good”.

24 So far there is one file in memory
So far there is one file in memory. If we simply read in another one – it will clobber what we have there. If we need to read in more data (say we have processed the data we’ve read in and now want a spectral ratio of the processed data with the original data) we have to use the “more” option to read in the additional data. SAC>read more filename

25 In general SAC does commands to all the files in memory.
If the command is starting from scratch (like a read) it clobbers what is already there. Some commands require certain pairs of files

26 Let’s try a few more things.
Here I have to be a little more careful when I specify the file name. I want to read in all 3 components of the seismogram. SAC> ls *sumatra*bh* ccm_sumatra_.bhe ccm_sumatra_.bhn ccm_sumatra_.bhz ccm_sumatra_bhz.tif SAC> r *sumatra*bh? ccm_sumatra_.bhe ccm_sumatra_.bhn ccm_sumatra_.bhz

27 Try the plot command. SAC> plot Waiting SAC plots the traces one at a time, in the order they are stored in memory. Each time you enter a <CR> it plots the next trace. (and says Waiting if there are more traces to display, or the prompt if not).

28 New command – plot1 ( “p1”).
SAC> plot1 SAC> This command plots all the data in memory on one plot.

29 Say I want to process these three traces together.
Notice that the three traces do not start at the same time (and we will see that they are not the same lengths, either).

30 We can fix the time alignment using
synchronize (“synch”): which modifies the headers of the files in memory so that they all have the same reference time. SAC> synch SAC> plot1

31 Before synch After synch
FILE: ccm_sumatra_.bhe – 1 NPTS = B = e+00 KZDATE = DEC 26 (361), 2004 KZTIME = 01:09:52.684 FILE: ccm_sumatra_.bhn – 2 NPTS = KZTIME = 01:09:48.485 FILE: ccm_sumatra_.bhz – 3 NPTS = KZTIME = 01:09:43.684 B = e+00 KZDATE = DEC 26 (361), 2004 KZTIME = 01:09:52.684 B = e+00 B = e+00

32 Data File Command Module
CUT: defines how much of a data file is to be read. Need to reread the data after specifying a cut SAC> cut t #cuts 5 s before, 30 s after t1 pick SAC> r WMQ.BHZ.D :

33 READHDR (rh) and WRITEHDR (wh): read and write headers without the data
LISTHDR (lh): list the header contents CHNHDR: change header values COPYHDR: copy header values from one file to the others in memory

34 example: SAC> r WMQ* SAC> chnhdr a SAC> lh picks FILE: WMQ.BHZ_10.Q.2004:18:52: NPTS = 1401 B = e+02 E = e+02 OMARKER = 0 AMARKER = T1MARKER = (Pi) SAC> wh #only overwrite the header because not changes were made to the time series

35 Graphics Action Module
PLOT (p): plots each signal in memory on a separate plot. PLOT1 (p1): plots a set of signals on a single plot with a common x axis and separate y axes. PLOT2 (p2): plots a set of signals on a single plot with common x and y axes (i.e. an overlay plot).

36 SAC> r WMQ. AAK. WMQ. BHZ_10. Q. 2004:18:52:27 AAK. BHZ_00. Q
SAC> r WMQ* AAK* WMQ.BHZ_10.Q.2004:18:52:27 AAK.BHZ_00.Q.2004:18:52:53 SAC> r more BJT* BJT.BHZ_00.Q.2004:18:50:19 SAC> plot Waiting

37 SAC> p1 SAC> p1 rel

38 SAC> color on increment on SAC> p2 SAC> p2 rel

39 Graphics There are three graphics ``devices'' currently supported.
SGF is a general purpose device driver representing a large class of actual physical devices. XWINDOWS is a general windowing system running on most high-resolution, bit-mapped graphics workstations. SUNWINDOW, is a windowing system that was available on the Sun in SunOS 4.X.

40 Xwindows or X X is widely used on the graphics workstation and offers one of the best frameworks for developing portable window-based applications. Should be the default graphics device. Can be turned on using the begin device (bg) command sac> bd x

41 SGF (SAC Graphics File)
SAC Graphics File contains all the information needed to generate a single plot on any graphics device. Each plot is stored in a separate file. The file names are of the form ``Fnnn.SGF'' where ``nnn'' is the plot number, beginning with ``001''. Can be turned on using sac> bd sgf

42 To create a postscript plot, you would turn on the sgf device, create your plot, and then run a conversion program called sgftops SAC> bd sgf SAC> p1 rel #plot waveform to file f001.sgf SAC> sgftops SAC> ls SAC> bd x #or ed sgf

Download ppt "Seismic Analysis Code (SAC)"

Similar presentations

Ads by Google