Presentation is loading. Please wait.

Presentation is loading. Please wait.

TOWARDS SCALABILITY IN TUPLE SPACES Philipp Obreiter, Guntram Gräf Telecooperation Office (TecO) University of Karlsruhe.

Similar presentations


Presentation on theme: "TOWARDS SCALABILITY IN TUPLE SPACES Philipp Obreiter, Guntram Gräf Telecooperation Office (TecO) University of Karlsruhe."— Presentation transcript:

1 TOWARDS SCALABILITY IN TUPLE SPACES Philipp Obreiter, Guntram Gräf Telecooperation Office (TecO) University of Karlsruhe

2 Obreiter/Gräf: Towards Scalability in Tuple Spaces Scalability Five dimensions: size of tuples number of tuples in the tuple space number of considered tuple spaces throughput of the tuple space number of clients

3 Obreiter/Gräf: Towards Scalability in Tuple Spaces Goals Scalable tuple space –without schematic restrictions Procedure: formalize and classify tuples analyze former indexing strategies deduce a new indexing strategy conceive the architecture and implementation of a scalable tuple space

4 Obreiter/Gräf: Towards Scalability in Tuple Spaces Hierarchy of fields (F,match F ) “Hello““World“12345678 intstring F F

5 Obreiter/Gräf: Towards Scalability in Tuple Spaces Hierarchy of fields x modulo y fraction F F 1/22/4 6/94/6 x modulo 5x modulo 3 01 2 01 2 3 4

6 Obreiter/Gräf: Towards Scalability in Tuple Spaces Hierarchy of tuples ( ,match  )   (int,  F ) (int,(int,int)) (  F, string) (int,string) (  F,“Hello“) (int,“Hello“) (1234,string) ( 1234, ( 56,78 )) ( 5678,“Hello“ )

7 Obreiter/Gräf: Towards Scalability in Tuple Spaces Distribution model Set of p servers {1,...,p} Distribution (  W,  R ) for tuple t  –writes to  W (t)  {1,...,p} –reads from  R (t)  {1,...,p}  condition for correctness match  (t 1,t 2 )   W (t 2 )   R (t 1 )   123456 RW

8 Obreiter/Gräf: Towards Scalability in Tuple Spaces abstract representation Conceiving a distribution Abstract representation –uncouples abstraction of tuples and adjustment to p –is an efficient data structure t   W (t) t  directly indirectly  R (t)  W (t)  R (t)

9 Obreiter/Gräf: Towards Scalability in Tuple Spaces Indexing based on hashing (I) (printer,  F,  F ) P1   (F) (scanner,  F,  F )(  F,1200dpi,  F ) ( printer,1200dpi,  F )( scanner,1200dpi,  F ) P2 P3 P4 (  F,1200dpi,x.x.x.x ) P5 S4 S5 S3 S2S1

10 Obreiter/Gräf: Towards Scalability in Tuple Spaces Indexing based on hashing (II) (printer,  F,  F ) P1   (F) (scanner,  F,  F )(  F,1200dpi,  F ) ( printer,1200dpi,  F )( scanner,1200dpi,  F ) P2 P3 P4 (  F,1200dpi,x.x.x.x ) P5 S4 S5 S3 S2S1 {1} {5} {6} {8}{3} {8} {5} {12} {2} {7}

11 Obreiter/Gräf: Towards Scalability in Tuple Spaces Indexing based on hashing (III) (printer,  F,  F ) P1   (F) (scanner,  F,  F )(  F,1200dpi,  F ) ( printer,1200dpi,  F )( scanner,1200dpi,  F ) P2 P3 P4 (  F,1200dpi,x.x.x.x ) P5 S4 S5 S3 S2S1 {3} {7}

12 Obreiter/Gräf: Towards Scalability in Tuple Spaces Indexing based on hypercubes Fields: –hierarchical structure  intervals instead of points –correctness: match F (f 1,f 2 )   F (f 2 )   F (f 1 ) Tuples: –tuple complex  multi-dimensional index –induces transformation   to hypercubes Distribution: –Partition hyperspace into tuple domains  1,...  p –(  ,   ) permissible with   (t) := {q |  q   (t)   }

13 Obreiter/Gräf: Towards Scalability in Tuple Spaces disjoint/complete tuple domains 012345 1 2 3 4 5 x1x1 x2x2 T3T3 T2T2 T4T4 T5T5 T6T6 T1T1

14 Obreiter/Gräf: Towards Scalability in Tuple Spaces disjoint/complete tuple domains  1 3 3  2 012345 1 2 3 4 5 x1x1 x2x2 T3T3 T2T2 T4T4 T5T5 T6T6 T1T1 44 5 5

15 Obreiter/Gräf: Towards Scalability in Tuple Spaces Tree of tuple domains x 2 = 0 22 x 1 = 2 x 2 = 3 x 1 = 4 44 55 33 22

16 Obreiter/Gräf: Towards Scalability in Tuple Spaces Overlapping/incomplete tuple domains 012345 1 2 3 4 5 x1x1 x2x2 T3T3 T2T2 T4T4 T5T5 T6T6 T1T1 3 3 1 1 2 2

17 Obreiter/Gräf: Towards Scalability in Tuple Spaces SATUSSATUS Implementation of a Scalable Tuple Spaces Management interface Extension to four tiers Built-in standard fields Validated with respect to: –Efficiency of the distribution –Efficiency of adaptive tuple domains

18 Obreiter/Gräf: Towards Scalability in Tuple Spaces Efficiency of the distribution 050100.2 Rate n 150200250300350400450500.4.6 1.8 pruning rate overhead

19 Obreiter/Gräf: Towards Scalability in Tuple Spaces Questions?


Download ppt "TOWARDS SCALABILITY IN TUPLE SPACES Philipp Obreiter, Guntram Gräf Telecooperation Office (TecO) University of Karlsruhe."

Similar presentations


Ads by Google