Presentation is loading. Please wait.

Presentation is loading. Please wait.

You are standing at rest and begin to walk forward. What force pushes you forward? 1. the force of your feet on your ground 2. the force of your acceleration.

Similar presentations


Presentation on theme: "You are standing at rest and begin to walk forward. What force pushes you forward? 1. the force of your feet on your ground 2. the force of your acceleration."— Presentation transcript:

1 You are standing at rest and begin to walk forward. What force pushes you forward? 1. the force of your feet on your ground 2. the force of your acceleration 3. the force of your velocity 4. the force of your momentum 5. the force of the ground on your feet Q4.1

2 You are standing at rest and begin to walk forward. What force pushes you forward? 1. the force of your feet on your ground 2. the force of your acceleration 3. the force of your velocity 4. the force of your momentum 5. the force of the ground on your feet A4.1

3 An apple sits at rest on a horizontal table top. The gravitational force on the apple (its weight) is one half of an action- reaction pair. What force is the other half? 1. the force of the Earth’s gravity on the apple 2. the upward force that the table top exerts on the apple 3. the upward force that the apple exerts on the Earth 4. the downward force that the apple exerts on the table top 5. the frictional force between the apple and the table top Q4.2

4 An apple sits at rest on a horizontal table top. The gravitational force on the apple (its weight) is one half of an action- reaction pair. What force is the other half? 1. the force of the Earth’s gravity on the apple 2. the upward force that the table top exerts on the apple 3. the upward force that the apple exerts on the Earth 4. the downward force that the apple exerts on the table top 5. the frictional force between the apple and the table top A4.2

5 An apple sits at rest on a horizontal table top. The weight of the apple is equal to the magnitude of the upward force that the table top exerts on the apple. Why? 1. this is a consequence of Newton’s first law 2. this is a consequence of Newton’s third law 3. because we assume that the table top is perfectly rigid 4. two of the above three statements are correct 5. all of the first three statements are correct Q4.3

6 An apple sits at rest on a horizontal table top. The weight of the apple is equal to the magnitude of the upward force that the table top exerts on the apple. Why? 1. this is a consequence of Newton’s first law 2. this is a consequence of Newton’s third law 3. because we assume that the table top is perfectly rigid 4. two of the above three statements are correct 5. all of the first three statements are correct A4.3

7 A woman pulls on a 6.00-kg crate, which in turn is connected to a 4.00-kg crate by a light rope. The light rope remains taut. Compared to the 6.00–kg crate, the lighter 4.00-kg crate 1. is subjected to the same net force and has the same acceleration 2. is subjected to a smaller net force and has the same acceleration 3. is subjected to the same net force and has a smaller acceleration 4. is subjected to a smaller net force and has a smaller acceleration 5. none of the above Q4.4

8 A woman pulls on a 6.00-kg crate, which in turn is connected to a 4.00-kg crate by a light rope. The light rope remains taut. Compared to the 6.00–kg crate, the lighter 4.00-kg crate 1. is subjected to the same net force and has the same acceleration 2. is subjected to a smaller net force and has the same acceleration 3. is subjected to the same net force and has a smaller acceleration 4. is subjected to a smaller net force and has a smaller acceleration 5. none of the above A4.4

9 You are pushing a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. As the tray moves, it pushes on a 0.50-kg milk carton. 1. the tray exerts more force on the milk carton than the milk carton exerts on the tray 2. the tray exerts less force on the milk carton than the milk carton exerts on the tray 3. the tray exerts as much force on the milk carton as the milk carton exerts on the tray Q4.5 If the food tray and milk carton move at constant speed,

10 You are pushing a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. As the tray moves, it pushes on a 0.50-kg milk carton. 1. the tray exerts more force on the milk carton than the milk carton exerts on the tray 2. the tray exerts less force on the milk carton than the milk carton exerts on the tray 3. the tray exerts as much force on the milk carton as the milk carton exerts on the tray A4.5 If the food tray and milk carton move at constant speed,

11 You are pushing a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. As the tray moves, it pushes on a 0.50-kg milk carton. 1. the tray exerts more force on the milk carton than the milk carton exerts on the tray 2. the tray exerts less force on the milk carton than the milk carton exerts on the tray 3. the tray exerts as much force on the milk carton as the milk carton exerts on the tray Q4.6 If the food tray and milk carton are accelerating to the left,

12 You are pushing a 1.00-kg food tray through the cafeteria line with a constant 9.0-N force. As the tray moves, it pushes on a 0.50-kg milk carton. 1. the tray exerts more force on the milk carton than the milk carton exerts on the tray 2. the tray exerts less force on the milk carton than the milk carton exerts on the tray 3. the tray exerts as much force on the milk carton as the milk carton exerts on the tray A4.6 If the food tray and milk carton are accelerating to the left,

13 Two crates, A and B, sit at rest side- by-side on a frictionless horizontal surface. You apply a horizontal force to crate A as shown. 1. the acceleration has a greater magnitude than if B were in the back and A were in the front 2. the acceleration has a smaller magnitude than if B were in the back and A were in the front 3. the crates will not move if the force magnitude F is less than the combined weight of the two crates 4. two of the above three statements are correct 5. none of the first three statements is correct Q4.7 Which statement is correct?

14 Two crates, A and B, sit at rest side- by-side on a frictionless horizontal surface. You apply a horizontal force to crate A as shown. 1. the acceleration has a greater magnitude than if B were in the back and A were in the front 2. the acceleration has a smaller magnitude than if B were in the back and A were in the front 3. the crates will not move if the force magnitude F is less than the combined weight of the two crates 4. two of the above three statements are correct 5. none of the first three statements is correct A4.7 Which statement is correct?

15 A horse is hitched to a wagon. Which statement is correct? 1. the force the horse exerts on the wagon is greater than the force that the wagon exerts on the horse 2. the force the horse exerts on the wagon is less than the force that the wagon exerts on the horse 3. the force the horse exerts on the wagon is just as strong as the force that the wagon exerts on the horse 4. the answer depends on the velocity of horse and wagon 5. the answer depends on the acceleration of horse and wagon Q4.8

16 A horse is hitched to a wagon. Which statement is correct? 1. the force the horse exerts on the wagon is greater than the force that the wagon exerts on the horse 2. the force the horse exerts on the wagon is less than the force that the wagon exerts on the horse 3. the force the horse exerts on the wagon is just as strong as the force that the wagon exerts on the horse 4. the answer depends on the velocity of horse and wagon 5. the answer depends on the acceleration of horse and wagon A4.8


Download ppt "You are standing at rest and begin to walk forward. What force pushes you forward? 1. the force of your feet on your ground 2. the force of your acceleration."

Similar presentations


Ads by Google