# Exploring 3D Power Distribution Network Physics

## Presentation on theme: "Exploring 3D Power Distribution Network Physics"— Presentation transcript:

Exploring 3D Power Distribution Network Physics
Xiang Hu1, Peng Du2, and Chung-Kuan Cheng2 1ECE Dept., 2CSE Dept., University of California, San Diego 10/25/2011 1

Outline Introduction 3D power distribution network (PDN) model
Circuit model Current model 3D PDN analysis flow Experimental results On-chip Current Distribution Resonance phenomena Noise reduction techniques Larger decap around TSVs Reduce Tier to tier impedance Conclusions

Introduction Power delivery issues in 3D ICs Coarse power grid models
More tiers => More current Same footprint on package TSVs and µbumps between tiers Coarse power grid models Missed detailed metal layer information Current source models Detailed 3D PDN analysis Frequency domain: resonance behavior Time domain: worst-case noise

3D PDN Circuit and Current Models
Circuit Model Lump model: Two-port model for chip between tiers Fine grid model: all metal layers: m1+ Current Model Power law Phase in f domain

3D PDN Distributed Model[1]
Power grid Structure: M1, M3, M6, RDL Each layer extracted in Q3D T2T: TSV+μbump Modeled as an RLC element Package: C4 bump based RLC model [1] X. Hu et al., “Exploring the Rogue Wave Phenomenon in 3D Power Distribution Networks,” IEEE 19th Conf. on Electrical Performance of Electronic Packaging and Systems, Oct. 2010, pp. 57–60.

Frequency-Domain Current Stimulus Model
Noise depends on the current model Rents rule power law: P: power consumption A: area k: constant number γ: exponent of the power law Current configurations γ =0: single current load 0< γ <1: taper-shaped current distribution γ =1: uniform current distribution In f domain, we can tune the phase

3D PDN Analysis Flow

Experiment Base Setup Two-tier PDN
TSV setup: 3x4 TSVs connected to M1 and AP on both side 5nF/mm2 decap on T1; 50nF/mm2 decap on T2 2x2 C4 on T1 AP Per bump inductance: 210pH Per bump resistance: 18.7mΩ M1 M3 M6 AP TSV T1 T2 Pitch (um) Width (um) X step Y step 2.5 0.2 8.5 0.25 30 4 400 3 20 40

Current Model: Input on T1
Two-tier PDN + VRM, board, and package Decap: Current: T1; distr.(γ=0, 0.5, 1) Probe A: T1 TSVs B: T1 between TSVs C: T2 Observation Smaller γ => larger noise Resonance at non-TSVs, but not at TSVs brd-pkg T1-T2 VRM-brd

Current Model: Noise Map w/ Input on T1 (@1GHz)
γ=0 γ=0.05 γ=1 T2

Current Model: Input on T2
Two-tier PDN + VRM, board, and package Decap: Current: T2; distr.(γ=0, 0.5, 1) Probe A: T1 TSV location B: T1 non-TSV location C: T2 Observation Smaller γ => larger noise

Current Model: Noise Map w/ Input @T2 (1GHz)
γ=0 γ=0.05 γ=1 T1 T2

Resonance Phenomena Decap: 5nF/mm2 @T1; 50nF/mm2 @T2
Current: T1 or T2, unif. (γ=1) Observation: resonance vary with decap configurations Probe: T1 Current: T1 Probe: T2 Current: T2 Global mid-freq resonance non-TSV locations. From lumped model: No mid-freq resonance peak due to “Rm1” No resonance TSV locations

Decap: Larger Decap Around TSVs
Decap: Case 1: uniform Case 2: half of decap at Observation: Case 2 is better Probe: T1 between TSVs Current: T1 unif. Probe: T2 Current: T2, unif Probe: T2 Current: T1 unif

Tier to Tier Impedance: Number of TSVs
TSV Setup Setup Case 1 Case 2 Case 3 TSV X step (M1 segments) 40 20 15 TSV Y step (M3 segments) 100 18 # TSV 4 12 32

Tier to Tier Impedance: Number of TSVs
TSV(Xpitch,Ypitch) Case 1: (40, 100) Case 2: (20, 40) Case 3: (15, 18) Current: T1, unif. (γ=1) Probes A: T1 TSV B: T1 between TSVs C: T2 Observation noise drops as #TSV increases resonance f drops as #TSV increases Resonant f determined by Cd1 As T2T impedance becomes smaller, resonance frequency is determined by both Cd1 and Cd2

On-chip power network model Current distribution model
Conclusion On-chip power network model Current distribution model Power law current distribution model reflects the current-area relation Decap: Various on-chip resonances Techniques of reducing 3D PDN noise Larger decap around TSV area Small tier to tier impedance

Thank You! Q & A

Similar presentations