Download presentation

Presentation is loading. Please wait.

2
**Lingo Optimization Software**

Tier II: Case Studies Section 1: Lingo Optimization Software

3
**Optimization Software**

Many of the optimization methods previously outlined can be tedious and require a lot of work to solve, especially as models get more complex and move beyond two or three variables, which will often be the case Software can be used to solve these problems more efficiently

4
**Optimization Software**

Software that is available usually uses the same methods previously outlined, but can of course perform the calculations quicker, allowing the effect of variations in the model to be studied more easily

5
**Optimization Software**

Some optimization examples have already been shown using Excel Another program, Lingo, will now be demonstrated A trial version of this software can be downloaded at

6
Lingo Lingo is a program designed specifically for solving optimization problems It uses a syntax that is similar to what would be written by hand, or what would be used in Excel, not requiring variables to be declared For example, y = 3*x^2 is y = 3x2

7
Lingo Operators Many of Lingo’s mathematical operators are similar to what Excel uses: Addition: + - Multiplication: * Subtraction: - - Division: / For exponents: X^n Equals: = Greater than or less than: > or < Note: Lingo accepts ‘<’ as being ‘<=’. It does not support strictly less than or greater than.

8
**Lingo Operators, con’t Absolute value of x: @abs(x)**

Natural log of @tan(x) (x in radians) To return integer portion of decimal @sign(x): returns -1 if x < 0, or else 1

9
Lingo Operators, con’t Find max or min value in a To find maximum or minimum of a function: max or min To allow negative Lingo has a number of other operators, but these are the mathematical operators that are most likely to be used

10
Using Lingo Other operators, like logic operators, can be found in the help file’s complete list of operators Now that we have the mathematical operators that are likely to be used, we can demonstrate how Lingo works with some examples Lingo can be used strictly as an equation solver or as an optimizer

11
**Solve – to solve current problem set**

Lingo Screenshot If additional help is needed Solve – to solve current problem set

12
Basic Equation Solver This will find the intersection of the lines “y = 3x + 4” and “y = 5x + 1”

13
**Note: Lingo does not distinguish between small and capital letters**

Solution Note: Lingo does not distinguish between small and capital letters

14
Equation Solver #2

15
Solution #2 Only one solution was found! There should be two solutions to this problem. The solver automatically stops when it finds the first solution.

16
Solution #2

17
**Non-linear Difficulties**

Lingo is not designed to deal with non-linear equations It cannot find multiple solutions There is a problem with solving non-linear problems, especially if the solution is in the negative domain

18
Maximum and Minimum The maximum and minimum functions are the most important functions needed for optimization problems These functions are used as follows: max = objective function; min = objective function;

19
**Solving Optimization Problems**

Several optimization examples that were worked through in previous sections will now be solved using Lingo The first example is from the introduction section

20
**Chemical Plant Example**

Objective: Maximize 1000x x2 Constraints: 4x1 + 2x2 <= 80 2x1 + 5x2 <= 60 4x1 + 4x2 <= 75 x1, x2 >= 0

21
**Chemical Plant Example**

22
Lingo Solution Solution, including value of objective function at optimum and optimum point

23
**Transportation Scheme Problem**

24
Problem #2 Solution

25
Negative Values Lingo cannot automatically solve for a negative variable value If it is suspected that a solution will be negative, then that variable will need to be specifically declared as free: @free(x); It is a good idea to declare all variables like this, unless of course a negative value is infeasible

26
**Attempting to Obtain a Negative Solution**

The following example will demonstrate what happens if a negative value is required to get an optimum solution Lingo will automatically solve for the optimum solution obtained from only positive variables, even if this is not the true optimum

27
**Attempting to Obtain a Negative Solution**

28
**Attempting to Obtain a Negative Solution**

This solution is viable if the variable values must be positive, but this is not the true optimum

29
**Attempting to Obtain a Negative Solution**

These statements allow negative values to be used for these variables

30
**Attempting to Obtain a Negative Solution**

Now the true optimum is obtained, with negative variables

31
**Greater Than or Less Than**

Another potential problem that will be encountered using Lingo is that it treats < the same as <=, and > the same as >= Thus, if a variable must be strictly greater than a value, the constraint is best treated as follows: For x > A, where A is a solution otherwise, use x > A + b; where b is an arbitrary value, like 0.1, that covers a portion where the solution will not lie

32
Example of < or >

33
Example of < or > Clearly this is not correct as X1 was constrained to be greater than 0!

34
Example of < or > This will now force X1 and X2 to be greater than 0. We can do this because we know X1 and X2 are also greater than 0.1.

35
Example of < or > Variables now obey desired constraints. Objective just happens to be the same in this case.

36
Conclusions Lingo is effective and efficient for solving optimization problems if they are linear It is not designed to deal with non-linear problems It is not very good at dealing with non-linear problems, so these must be approached with caution It does not handle multiple maximum or minimum points very well in non-linear cases

Similar presentations

OK

Introduction This module about Process Optimization was produced under the Program for North American Mobility in Higher Education as part of the Process.

Introduction This module about Process Optimization was produced under the Program for North American Mobility in Higher Education as part of the Process.

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google