Download presentation

Presentation is loading. Please wait.

Published byClaire Scofield Modified over 2 years ago

1
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 1 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I C H A P T E R 3 Resistive Network Analysis

2
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 2 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.2 Use of KCL in nodal analysis

3
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 3 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.3 Illustration of nodal analysis Va/R1+(Va-Vb)/R2 =Is Vb/R3+(Vb-Va)/R2=0 Or Va(1/R1+1/R2)+Vb(-1/R2)=Is Va(-1/R2) +Vb(1/R2+1/R3)=0 or, in matrix form

4
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 4 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.5 Example 3.1 R1=1K, R2=2K, R3=10K,R4=2K I1=10mA, I2=50mA, V1/R1+(V1-V2)/R2+(V1-V2)/R3=I1 V2/R4+(V2-V1)/R2+(V2-V1)/R3=-I2 Or (1/R1+1/R2+1/R3)V1+ (-1/R2-1/R3)V2=I1 (-1/R2-1/R3)V1 + (1/R2+1/R3+1/R4)V2= I2 Plugging the numbers 1.6 V1- 0.6 V2=10 -0.5V1 +1.1 V2=-50 By solving the above Eq. V1=-13.57 V2=-52.86

5
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 5 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.8 Nodal analysis with voltage sources Va=Vs (Vs-Vb)/R1-vb/R2-(Vb-Vc)/R3=0 (Vb-Vc)/R3+Is-Vc/R4=0 Or (1/R1+1/R2+1/R3)Vb+(-1/R3)Vc=Vs/R1 (-1/R3)Vb+ (1/R3+1/R4)Vc=Is Or in Matrix form

6
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 6 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.13 Assignment of currents and voltages around mesh 1 R 3 R 4 v S R 1 R 2 + _i 1 i 2 v 2 v 1 +– + – Mesh 1: KVL requires that v S – v 1 – v 2 = 0, where v 1 = i 1 R 1, v 2 = ( i 1 – i 2 )R 1.

7
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 7 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.14 Assignment of currents and voltages around mesh 3

8
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 8 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.12 A two-mesh circuit R 3 R 4 v S R 1 R 2 + _ i 1 i 2 I1R1+(I1-I2)R2=Vs (I2-I1)R2 + I2R3 + I2R4=0 Or The advantage of Mesh Current Method is that it uses resistances in the equations, rather than conductances. But Node Voltage Method is physically more sensible.

9
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 9 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.18 Mesh analysis with current sources 2 4 10 V 5 2 A i 1 v x i 2 + _ + – 5I1 +Vx =10 -Vx+2I2+4I2=0 I1-I2=2 Adding Eqs. 1 and 2 will delete Vx 5I1 +6 I2 =10 I1-I2=2 I1=2 A I2=0 P3.1-3.20

10
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 10 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.26 The principle of superposition R v B2 + _ + _ v B1 i = R + _ v B 1 i B 1 The net current through R is the sum of the in- dividual source currents: i = i B1 +i B 2. R v B 2 + _ i B2 +

11
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 11 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.27 Zeroing voltage and current sources

12
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 12 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.28 One-port network Linear network i v + – i

13
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 13 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.29 Illustration of equivalent-circuit concept R 3 + _ v S R 2 i v + – R 1 LoadSource

14
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 14 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.31 Illustration of Thevenin theorum i i Load v + – Source Load v + – + _ R T v T

15
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 15 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.32 Illustration of Norton theorem v + – R N i N i v + Source – – i Load

16
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 16 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.34 Equivalent resistance seen by the load

17
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 17 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.35 An alternative method of determining the Thevenin resistance R 2 a b R 3 R 1 v x + – i S R 3 R T =R 1 ||R 2 + R 3 R 1 i S R 2 i S What is the total resistance the current i S will encounter in flowing around the circuit?

18
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 18 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.46 R 2 R 1 + _ v S R L R 3 i L

19
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 19 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.47 R 1 + _ v S R 3 R 2 v O C + –

20
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 20 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.48 R 1 + _ v S R 3 R 2 v OC + – v OC + – +– 0V i

21
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 21 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.49 A circuit and its Thevenin equivalent

22
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 22 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.57 Illustration of Norton equivalent circuit i SC i N R T =R N i One - port network

23
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 23 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.58 Computation of Norton current R 2 R 1 + _ v S R 3 i SC i 1 i 2 Short circuit replacing the load v

24
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 24 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.63 Equivalence of Thevenin and Norton representations

25
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 25 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.64 Effect of source transformation R 2 R 1 v S R 3 i SC + _ R 3 R 2 v S i R 1 R 1

26
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 26 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.65 Subcircuits amenable to source transformation

27
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 27 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.71 Measurement of open-circuit voltage and short-circuit current

28
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 28 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.73 Power transfer between source and load

29
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 29 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.74 Source loading effects v T v int + _ R L +– R T i i N vR L + – i int R T SourceLoad SourceLoad

30
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 30 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.77 Representation of nonlinear element in a linear circuit R T + _ i x v T v x + – Nonlinear element Nonlinear element as a load. We wish to solve for v x andi x.

31
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 31 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.78 Load line i X v x 1 R T Load-line equation:i x =– v T R T v x + v T –1 R T v T R T

32
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 32 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.79 Graphical solution equations 3.48 and 3.49 i x v x i=I o e v,v > 0 i-v curve of “exponential resistor ” Solution 1 R T Load-line equation:i x = v T R T v x + v T R T v T

33
© The McGraw-Hill Companies, Inc. 2000 McGraw-Hill 33 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I Figure 3.80 Transformation of nonlinear circuit of Thevenin equivalent i x v x + – Linear network load R Nonlinear T + _ v T v x + – i x load Nonlinear

Similar presentations

OK

EEE1012 Introduction to Electrical & Electronics Engineering Chapter 2: Circuit Analysis Techniques by Muhazam Mustapha, July 2010.

EEE1012 Introduction to Electrical & Electronics Engineering Chapter 2: Circuit Analysis Techniques by Muhazam Mustapha, July 2010.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on limitation act ontario Ppt on conservation of plants and animals download Ppt on viruses and bacteria test Ppt on applied operations research analyst Ppt on question tags grammar Ppt on modern techniques of agriculture Ppt on latest technology in communication Ppt on law against child marriage in india Jit ppt on manufacturing engineer Ppt on autonomous car sensors