Download presentation

Presentation is loading. Please wait.

Published byEricka Osment Modified over 2 years ago

1
Unambiguous automata inference by means of states-merging methods François Coste, Daniel Fredouille {fcoste|dfredoui}@irisa.fr http://www.irisa.fr/symbiose IRISA-INRIA, Campus de Beaulieu 35042 Rennes Cedex France

2
D. Fredouille and F. Coste, Unambiguous Automata Inference2 Definitions n Alphabet: = {a,b} n Word:abbabbabbaaa n Language:L n Automaton: * * I- Automata inference L={a+b}*a{a+b}

3
D. Fredouille and F. Coste, Unambiguous Automata Inference3 Classes of automata (1/3) n Nondeterministic Automata (NFA) n Deterministic Automata (DFA) –one outgoing transition per input symbol I- Automata inference a a L={a+b}*a{a+b}

4
D. Fredouille and F. Coste, Unambiguous Automata Inference4 Classes of automata (2/3) n Unambiguous Automata (UFA) [SH85] –one acceptance per word I- Automata inference a b a b b a a b b b L={a+b}*a{a+b} n NFA UFA DFA

5
D. Fredouille and F. Coste, Unambiguous Automata Inference5 Automata inference Examples Counter-examples I- Automata inference S ={aa,abab} + S ={ba,abbb} - L={a+b}*a{a+b}

6
D. Fredouille and F. Coste, Unambiguous Automata Inference6 Why this study ? n State of the art: DFA inference n Our goal: introducing some amount of non-determinism n Why ? –NFA << DFA –inferring with less data –inferring “explicit” representations n Method: –extending classical DFA inference algorithm I- Automata inference

7
D. Fredouille and F. Coste, Unambiguous Automata Inference7 II - Study of the DFA inference framework

8
D. Fredouille and F. Coste, Unambiguous Automata Inference8 Search space for NFAs [DMV94] UA MCA II - The DFA search space

9
D. Fredouille and F. Coste, Unambiguous Automata Inference9 Counter-examples : compatibility UA S L - S L = - (compatible) (incompatible) MCA II - The DFA search space

10
D. Fredouille and F. Coste, Unambiguous Automata Inference10 The search space for DFA UA MCA Deterministic merging State merging II - The DFA search space

11
D. Fredouille and F. Coste, Unambiguous Automata Inference11 q1,q2 Q, w *: w pref(q1) w pref(q2) state-merging(q1,q2) II - The DFA search space Merging for determinisation procedure

12
D. Fredouille and F. Coste, Unambiguous Automata Inference12 q1,q2 Q, w *: w pref(q1) w pref(q2) state-merging(q1,q2) II - The DFA search space Merging for determinization procedure

13
D. Fredouille and F. Coste, Unambiguous Automata Inference13 q1,q2 Q, w *: w pref(q1) w pref(q2) state-merging(q1,q2) II - The DFA search space Merging for determinization procedure

14
D. Fredouille and F. Coste, Unambiguous Automata Inference14 Deterministic merging operator = state-merging + merging for determinization II - The DFA search space n Very commonly used [OG92, LPP98,...] n Demonstration of formal properties –Merging for determinization Enables to reach the “closest” DFA from the original NFA –Deterministic merging Enables to reach all derived DFA from a given DFA –... (see tech. rep.)

15
D. Fredouille and F. Coste, Unambiguous Automata Inference15 IV - From DFA to UFA inference or how to introduce some amount of non- determinism in inference

16
D. Fredouille and F. Coste, Unambiguous Automata Inference16 Inferring non-deterministic representations: the choice of UFA III - DFA to UFA inference n Why UFA ? –unity in the search space (like DFA) NFA UFA DFA UA MCA({aaaaa})

17
D. Fredouille and F. Coste, Unambiguous Automata Inference17 Merging for disambiguisation procedure III - DFA to UFA inference q1,q2 Q, w1,w2 *: w1 pref(q1) w1 pref(q2) w2 suff(q1) w2 suff(q2) state-merging(q1,q2)

18
D. Fredouille and F. Coste, Unambiguous Automata Inference18 Merging for disambiguisation procedure III - DFA to UFA inference q1,q2 Q, w1,w2 *: w1 pref(q1) w1 pref(q2) w2 suff(q1) w2 suff(q2) state-merging(q1,q2)

19
D. Fredouille and F. Coste, Unambiguous Automata Inference19 Unambiguous merging = state-merging + merging for disambiguisation III - DFA to UFA inference n Finer operator than merging for determinization n Demonstration of formal properties –Merging for disambiguisation Enables to reach the “closest” UFA from the original NFA –unambiguous merging Enables to reach all derived UFA from a given UFA –... (see tech. rep.)

20
D. Fredouille and F. Coste, Unambiguous Automata Inference20 IV - Comparative experiments - Inference algorithms - Benchmarks - Experimental results

21
D. Fredouille and F. Coste, Unambiguous Automata Inference21 Algorithms n UFA –Hill-climbing heuristic n DFA –EDSM heuristic [LPP98] n RFSA –DeLeTe II [DLT01] IV - Comparative experiments –Hill-climbing heuristic

22
D. Fredouille and F. Coste, Unambiguous Automata Inference22 Counter-example use for DFA and UFA inference n Compatibility [DMV94] –generalization of, stopped by n Functionality [AS95] –generalization of and, stopped by empty intersection IV - Comparative experiments S + S - S + S -

23
D. Fredouille and F. Coste, Unambiguous Automata Inference23 Benchmarks n [DLT01] –Generation: DFA, NFA, Regular Expression –4 sizes of training sample –30 languages generated for each generation mode and sample size n + UFA generator n Evaluation based on –average recognition level on test sets –matches between recognition level IV - Comparative experiments

24
D. Fredouille and F. Coste, Unambiguous Automata Inference24 Results n Best algorithms w.r.t. benchmarks –DFA bench:UFA inference with hill-climbing –UFA bench:DFA inference with hill-climbing UFA inference with hill-climbing –NFA bench: RFSA inference –Reg. Expr.:RFSA inference DFA inference with hill-climbing ? IV - Comparative experiments

25
D. Fredouille and F. Coste, Unambiguous Automata Inference25 Results n Heuristic: –Hill-climbing >> EDSM when inferring DFAs for NFA/Regular Expression/UFA bench. n Counter-examples: –Compatibility Functionality IV - Comparative experiments

26
D. Fredouille and F. Coste, Unambiguous Automata Inference26 Results (matches) IV - Comparative experiments

27
D. Fredouille and F. Coste, Unambiguous Automata Inference27 Conclusion n UFA inference –Merging for disambiguisation –Heuristic n Comparison with EDSM & DeLeTe II Perspectives n Speeding up the algorithm n Application n Using properties of the DFA/UFA space

28
D. Fredouille and F. Coste, Unambiguous Automata Inference28 References n [AS95] Alquézar, Sanfeliu, “Incremental grammatical inference from positive and negative data using unbiased finite state automata”, SSPR’94 n [DMV94] Dupont and al. “What is the search space of the regular inference ?”, ICGI ’94 n [DLT00] Denis and al., “Learning regular languages using nondeterministic automata”, ICGI ’00 n [SH85] Stearns, Hunt, “On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata”, SIAM vol 14 n [tech. rep.] Coste, Fredouille “What is the search space for NFA, UFA and DFA inference ?”, IRISA

Similar presentations

OK

Nondeterministic Finite Automata CS 130: Theory of Computation HMU textbook, Chapter 2 (Sec 2.3 & 2.5)

Nondeterministic Finite Automata CS 130: Theory of Computation HMU textbook, Chapter 2 (Sec 2.3 & 2.5)

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on topic triangles Ppt on causes of 1857 revolt leaders Ppt on poverty and unemployment in india Ppt on synthesis and degradation of purines and pyrimidines Ppt on financial performance analysis Ppt on power supply of computer Vlsi physical design ppt on high level synthesis Download ppt on amplitude modulation Ppt on body language in interview Topics for ppt on environment