Download presentation

Presentation is loading. Please wait.

Published byElvis Lamberton Modified over 3 years ago

1
Kripke-Style Semantics for Normal Systems Arnon Avron and Ori Lahav Tel Aviv University LATD 2010

2
Outline “Normal” Gentzen systems Generalized non-deterministic Kripke-style semantics General soundness and completeness theorem Analycity of normal Gentzen systems Extensions to hypersequents Application: non-deterministic connectives in Gödel logic 2

3
Normal Gentzen Systems Fully-structural propositional sequential systems Normal derivation rule: ◦ The rule: s 1 s 2 … s m / c ◦ Its application: 3 (s 1 )+context 1 … (s m )+context m (c)+context

4
Normal Rules Example 4 ,φ ,ψ ,φψ,φ ,ψ ,φψ p 1 p 2 / p 1 p 2 ,φ ψ φψ,φ ψ φψ

5
Normal Rules Example 5 ,φ ,ψ ,φψ,φ ,ψ ,φψ p 1 p 2 / p 1 p 2 ,φ ψ φψ,φ ψ φψ Each premise is associated with a context restriction. p 1 p 2 / p 1 p 2 wff wff wff

6
Many-Sided Sequents Classical sequent: ( , are finite sets of formulas) n-sided sequent: 1 ; 2 ; … ; n Notation ◦ Let I be a finite set of signs. ◦ A signed formula: i ψ (i I and ψ is a formula). ◦ A sequent is a finite set of signed formulas. Negative interpretation [Baaz, Fermüller, Zach `93] {i 1 ψ 1, …, i n ψ n } is true iff i k is not the truth-value assigned to ψ k for some i k n Classical sequent notation I = {t,f} is{ t ψ | ψ } { f ψ | ψ } 6

7
Normal Rules A normal rule: ◦ Premises: sequents s 1 … s m ◦ Context restrictions: corresponding sets of signed formulas 1 … m ◦ A Conclusion: a sequent c Its application: 7 (s 1 ) (s’ 1 ) … (s m ) (s’ m ) (c) s’

8
Examples S4’s Box I = {t,f} p 1, / p 1 ={t φ | φ wff } {f φ | φ wff } 3-Valued Lukasiewicz's Implication [Zach `93] I = {f,I,t} f p 1, , I p 1, I p 2, , t p 2, / t p 1 p 2 ={ i φ | i I, φ wff } (i.e. no context restriction) 8 ,ψ ,ψ ,ψ ,ψ , φ ; ; Σ ; , φ, ψ ; Σ ; ; Σ, ψ ; ; Σ, φ ψ

9
Normal Gentzen Systems Axioms Weakenings Cut Finite set of normal Gentzen rules 9 iφ, jφiφ, jφ s s, i φ s, i 1 φ … s, i n φ s for every i j in I for every i I where I ={i 1,…,i n }

10
Examples of Normal Gentzen Systems Normal Gentzen systems are suitable for: ◦ Classical logic ◦ Intuitionistic logic ◦ Dual-intuitionistic logic ◦ Bi-intuitionistic logic ◦ S4 and S5 ◦ n-valued Lukasiewicz logic ◦ … 10

11
Kripke Semantics Kripke Frame ◦ Set of worlds W ◦ Legal set of relations R 1,R 2,… W W ◦ Legal valuation v : W x wff I A sequent s is true in a W iff i φ s. v(a, φ ) i A sequent is R-true in a W iff it is true in every b W s.t. aRb 11

12
G-Legal Kripke Frames A normal system G induces a set of G-legal Kripke frames: ◦ A preorder R for every context-restriction in G. If is the set of all signed formulas, R is the identity relation. ◦ Generalized persistence condition If i φ , v(a, φ )=i implies v(b, φ )=i for every b s.t. aR b. ◦ The valuation should respect the logical rules of G Respect a rule s 1, 1 ,…, s m, m / c : If 1 i m. σ (s i ) is R i -true in a W, then σ (c) is true in a 12

13
Rules Semantics = R wff ◦ v(a, ) is free when v(a, )=f and (v(b, )=f or v(b, )=t for every b a) Example: Primal Intuitionistic Implication (Gurevich ‘09) 13 if v(a, )=t then v(b, )=t for every b a Persistence v(a, )=t if v(b, )=t for every b a Respect rule #1 v(a, )=f if v(a, )=t and v(a, )=f Respect rule #2 p 2, wff / p 1 p 2 1 , , , p 1, wff wff , p 2 , wff wff / p 1 p 2 2

14
Strong Soundness and Completeness For every normal system G, C ├ G s iff every G-legal frame which is a model of C is also a model of s. Applications: ◦ Several known completeness theorems are immediately obtained as special cases. ◦ Compactness theorem. ◦ Basis for semantic proofs of analycity. ◦ Semantic decision procedure for analytic systems. 14

15
Analycity A normal system is (strongly) analytic iff it has the subformula property, i.e. C ├ G s implies that there exists a proof of s from C in G that contains only subformulas of C and s. Analycity implies: decidability, consistency and conservativity. 15

16
Semantic Characterization of Analycity Def Given a set E of formulas, an E-Semiframe is a Kripke frame, except for: v : W E I instead of v : W wff I. Notation Given a set E of formulas, C ├ G E s iff there exists a proof of s from C in G containing only formulas from E. Thm C ├ G E s iff every G-legal E-semiframe which is a model of C is also a model of s. Cor G is analytic iff for every C and s, if every G-legal frame which is a model of C is also a model of s, then this is also true with respect to sub[C,s]-semiframes. 16

17
Semantic Proofs of Analycity To prove that G is analytic, it suffices to prove: Every G-legal semiframe can beextended to a G-legal frame. This can be easily done in many important cases: ◦ Normal systems for classical logic, intuitionistic logic, dual and bi-intuitionistic logics, S4, S5, n-valued Lukasiewicz's logic… ◦ The family of coherent canonical systems. 17

18
Normal Hypersequent Systems This approach can be extended to hypersequent systems (with internal contraction). Generalized communication rule: Examples: S4.3Gödel logic 18 G | s 1 (s 2 ) G | s 2 (s 1 ) G | s 1 | s 2 R is linear

19
Application: Adding Non-Deterministic Connectives to Gödel Logic General Motivations: ◦ Uncertainty or ambiguity on the level of the connectives ◦ Gurevich’s Motivation: proof-search complexity Examples ◦ v( ) [v( ), v( ) v( )] ◦ v( ) [min{v( ),v( )}, max{v( ),v( )}] Remains decidable 19 G | G | G | , G | , G | , G | , G | , G | , G | , G | , G | ,

20
Thank you! 20

Similar presentations

OK

1 Section 10.2 Boolean Algebra Motivation: Notice the list of corresponding properties for the algebra of sets and the algebra of propositional wffs. These.

1 Section 10.2 Boolean Algebra Motivation: Notice the list of corresponding properties for the algebra of sets and the algebra of propositional wffs. These.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google