# Forms of Equivalence Class Testing Normal • only equivalence classes are valid and invalid input values • emphasis is on "single failures" • works.

## Presentation on theme: "Forms of Equivalence Class Testing Normal • only equivalence classes are valid and invalid input values • emphasis is on "single failures" • works."— Presentation transcript:

Forms of Equivalence Class Testing
Normal • only equivalence classes are valid and invalid input values • emphasis is on "single failures" • works well when variables have a valid range • test cases: check valid case, then check invalid combinations by using one invalid value with remaining valid values. Weak • more complex equivalence classes of valid input values • variables may have several ranges of valid values • test cases "cover" valid combinations Strong • equivalence classes as in weak form • cross product of equivalence classes of valid input values • presumes variables are independent We compare these for a function of three variables, F(x , x , x ) 1 2 3

Forms of Equivalence Class Testing
Normal: classes of valid values of inputs Robust: classes of valid and invalid values of inputs Weak: (single fault assumption) one from each class Strong: (multiple fault assumption) one from each class in Cartesian Product We compare these for a function of three variables, F(x1, x2, x3)

Weak Robust Equivalence Class Test Cases
d x 2 1 Equivalence Classes: Valid(x ) : a Š x Š b; Invalid(x ) : x Š a , x  b 1 1 1 1 1 Valid(x ) : c Š x Š d; Invalid(x ) : x Š c , x  d 2 2 2 2 2

Weak Robust Equivalence Class Testing
Variable Valid input set x a1 e V1X1, a2 e V2X1 1 x b1 e V1X2, b2 e V2X2, b3 e V3X2, b4 e V4X2 2 x c1 e V1X3, c2 e V2X3, c3 e V3X3 3 Test cases F(a1, b1, c1) F(a2, b2, c2) F(a1, b3, c3) F(a2, b4, c1)

Weak Normal Equivalence Class Test Cases
x 2 g f e a b c d x 1 Equivalence Classes: x : a Š x Š b, b < x Š c, c < x Š d 1 1 1 1 x : e Š x Š f, f < x Š g 2 2 2

Strong Normal Equivalence Class Testing
Variable Valid input set x a1 e V1X1, a2 e V2X1 1 x b1 e V1X2, b2 e V2X2, b3 e V3X2, b4 e V4X2 2 x c1 e V1X3, c2 e V2X3, c3 e V3X3 3 Test cases F(a1, b1, c1), F(a1, b1, c2), F(a1, b1, c3) F(a1, b2, c1), F(a1, b2, c2), F(a1, b2, c3) F(a1, b3, c1), F(a1, b3, c2), F(a1, b3, c3) F(a1, b4, c1), F(a1, b4, c2), F(a1, b4, c3) F(a2, b1, c1), F(a2, b1, c2), F(a2, b1, c3) F(a2, b2, c1), F(a2, b2, c2), F(a2, b2, c3) F(a2, b3, c1), F(a2, b3, c2), F(a2, b3, c3) F(a2, b4, c1), F(a2, b4, c2), F(a2, b4, c3

Strong Normal Equivalence Class Test Cases
x 2 g f e a b c d x 1 Equivalence Classes: x : a Š x Š b, b < x Š c, c < x Š d 1 1 1 1 x : e Š x Š f, f < x Š g 2 2 2

Similar presentations