Download presentation

1
**Continuous Stirred Tank Reactor**

2
Problem statement A chemical reaction takes place in a series of four continuous stirred tank reactors arranged as shown in Fig

3
**100 lit/hr 100 lit/hr 1000 lit/hr CA0=1 mol/lit 1000 lit/hr CA1 CA2**

V1 CA 1 K1 V2 CA 2 K2 V3 CA 3 K3 V4 CA 4 K4 1000 lit/hr CA1 CA2 CA3 CA4

4
**The chemical reaction is a first order irreversible reaction of the type-**

A B The value of the rate constant ki, is different in each reactor. Also, the volume of each reactor Vi is different k

5
**Assumptions: The system is steady state and unsteady state.**

The reactions are in liquid phase. There is no change in volume or density of the liquid. Reactor Vi(L) Ki(h-1) 1 1000 0.3 2 1500 0.4 3 100 0.1 4 500 0.2

6
Solution

7
**Material balance continued:**

8
**Using MATLAB for steady state results**

function f=fourcstrsteady(x) f=zeros(4,1); %defining constants CA0=1; V1=1000; K1=0.1; %data from table V2=1500; K2=0.2; V3=100; K3=0.4; V4=500; K4=0.3; xa=x(1);xb=x(2);xc=x(3);xd=x(4); %material balance equations: f(1)=(1000*CA0)-(1000*xa)-(V1*K1*xa); f(2)=(1000*xa)+(100*xc)-(1100*xb)-(V2*K2*xb); f(3)=(1100*xb)+(100*xd)-(1200*xc)-(V3*K3*xc); f(4)=(1100*xc)-(1100*xd)-(V4*K4*xd);

9
**Running the following displays the steady state concentrations in the tanks:**

clc clear all x0=[0,0,0,0]; %initial values x0) %fsolve to solve the steadystate

10
**MATLAB for unsteady state results**

function f=fourcstr(t,x) f=zeros(4,1); %defining constants CA0=1; V1=1000; K1=0.1;%data from the table given V2=1500; K2=0.2;%data from the table given V3=100; K3=0.4;%data from the table given V4=500; K4=0.3;%data from the table given xa=x(1);xb=x(2);xc=x(3);xd=x(4); %defining the differential equations %material balance equations assuming unsteady state f(1)=(1000*CA0)-(1000*xa)-(V1*K1*xa); f(2)=(1000*xa)+(100*xc)-(1100*xb)-(V2*K2*xb); f(3)=(1100*xb)+(100*xd)-(1200*xc)-(V3*K3*xc); f(4)=(1100*xc)-(1100*xd)-(V4*K4*xd);

11
**Running the following code in MATLAB yields the **

plot depicting the variation of Concentration in each tank: clc clear all x0=[1;0;0;0]; %defining the initial values. [0 0.1], x0); %ode45 to solve the unsteady state figure; plot(t,x); %plot function %labelling x and y axes xlabel('time t(hrs)'); ylabel('concentration c(t)');

12
**Steady state result predicted :**

At steady state, the concentration in tanks 1,2,3 and 4 as predicted by the programme: [CA1 CA2 CA3 CA4]= [ ]

13
**Unsteady state results**

The following variation is predicted with respected to time

Similar presentations

OK

L2b-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. L2b: Reactor Molar Balance Example.

L2b-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. L2b: Reactor Molar Balance Example.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on question tags esl Ppt on id ego superego Simple machines for kids ppt on batteries Ppt on history of olympics gymnastics Ppt on search engine of internet Ppt on fourth and fifth state of matter wikipedia Download ppt on crop production and management Download ppt on development class 10 economics Ppt on schottky diode testing Nokia acquired by microsoft ppt online