Download presentation

Presentation is loading. Please wait.

Published byKane Sutliff Modified over 3 years ago

1
1© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj Expressing Probabilistic Context-Free Grammars in the Relaxed Unification Formalism Tony Abou-Assaleh Nick Cercone & Vlado Keselj Faculty of Computer Science Dalhousie University

2
2© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj Agenda Relaxed Unification RU System PCFG in PROLOG PCFG in RU System Conclusion Future Work

3
3© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj Relaxed Unification Classical Unification: t1 = f(a,h(b)) t2 = f(a,h(c)) t1 U t2 = fail Relaxed Unification t1 = {f( {a}, {h( {b} )} )} t2 = {f( {a}, {h( {c} )} )} t1 U R t2 = {f( {a}, {h( {b,c} )} )}

4
4© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj RU System Relaxed unification inference engine Syntax is based on first-order logic Relaxed predicates and queries Degree of belief Correctness function

5
5© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj PCFG in PPROLOG Sample PCFG NP -> D N /0.8 NP -> N /0.2 D -> a /0.6 D -> the /0.4 N -> fox /1.0

6
6© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj PCFG in PROLOG Probabilistic DCG in PROLOG np(X) --> d(Y), n(Z), {X is 0.8*Y*Z}. np(X) --> n(Y), {X is 0.2*Y}. d(X) --> [a], {X is 0.6}. d(X) --> [the], {X is 0.4}. n(X) --> [fox], {X is 1.0}.

7
7© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj PCFG in PROLOG PROLOG Internal Representation np(X, S0, S) :- d(Y, S0, S1), n(Z, S1, S), X is 0.8*Y*Z. np(X, S0, S) :- n(Y, S1, S), X is 0.2*Y. d(X, S0, S) :- ’C’(S0, a, S), X is 0.6. d(X, S0, S) :- ’C’(S0, the, S), X is 0.4. n(X, S0, S) :- ’C’(S0, fox, S), X is 1.0. ’C’([X|S], X, S).

8
8© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj PCFG in PROLOG Example query: ?- np(Prob, [a, fox], []). Prob = 0.48 ?= np(Prob, [fox], []). Prob = 0.2

9
9© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj PCFG in RU System

10
10© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj PCFG in RU System Probabilistic DCG in RU System (1.0) s --> np, vp.(0.5) n --> time. (0.4) np --> n.(0.3) n --> arrow. (0.2) np --> n, n.(0.2) n --> flies. (0.4) np --> d, n.(1.0) d --> an. (0.5) vp --> v, np.(0.3) v --> like. (0.5) vp --> v, pp.(0.7) v --> flies. (1.0) pp --> p, np.(1.0) p --> like.

11
11© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj PCFG in RU System RU System Internal Representation (1.0) s(X0, X, s(T1, T2)) :- np(X0, X1, T1), vp(X1, X, T2). (0.4) np(X0, X, np(T)) :- n(X0, X, T). (0.2) np(X0, X, np(T1, T2)) :- n(X0, X1, T1), n(X1, X, T2). (0.4) np(X0, X, np(T1, T2)) :- d(X0, X1, T1), n(X1, X, T2). (0.5) vp(X0, X, vp(T1, T2)) :- v(X0, X1, T1), np(X1, X, T2). (0.5) vp(X0, X, vp(T1, T2)) :- v(X0, X1, T1), pp(X1, X, T2). (1.0) pp(X0, X, pp(T1, T2)) :- p(X0, X1, T1), np(X1, X, T2). (0.5) n(X0, X, n(time)) :- ’C’(X0, time, X). (0.3) n(X0, X, n(arrow)) :- ’C’(X0, arrow, X). (0.2) n(X0, X, n(flies)) :- ’C’(X0, flies, X). (1.0) d(X0, X, d(an)) :- ’C’(X0, an, X). (0.3) v(X0, X, v(like)) :- ’C’(X0, like, X). (0.7) v(X0, X, v(flies)) :- ’C’(X0, flies, X). (1.0) p(X0, X, p(like)) :- ’C’(X0, like, X). (1.0) ’C’([X|Y],X,Y).

12
12© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj PCFG in RU System Query: ?- s([time, flies, like, an, arrow], [], T). (0.0084) T = s(np(n(time)), vp(v(flies), pp(p(like), np(d(an), n(arrow))))) (0.00036) T = s(np(n(time), n(flies)), vp(v(like), np(d(an), n(arrow))))

13
13© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj Conclusion Implementation of a relaxed unification inference engine Expressing PCFG in RU System Simple + Parse trees

14
14© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj Future Work Express HPSG in the relaxed unification formalism Express probabilistic HPSG in RU System Apply RU System to Question Answering

15
15© 2003 T. Abou-Assaleh, N. Cercone, & V. Keselj Thank you! Question or comments? www.cs.dal.ca/~taa/

Similar presentations

OK

NLP. Introduction to NLP Time flies like an arrow –Many parses –Some (clearly) more likely than others –Need for a probabilistic ranking method.

NLP. Introduction to NLP Time flies like an arrow –Many parses –Some (clearly) more likely than others –Need for a probabilistic ranking method.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on busy accounting software Download ppt on business plan Ppt on 2 stroke engine Ppt on kingdom plantae for class 9 Ppt on computer languages 1gl Ppt on south africa culture and customs Ppt on condition of girl child in india Free ppt on india size and location Ppt on new zealand culture and tradition Ppt on history of atom timeline