# Penn ESE370 Fall2014 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 24: October 27, 2014 Distributed RC Wire.

## Presentation on theme: "Penn ESE370 Fall2014 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 24: October 27, 2014 Distributed RC Wire."— Presentation transcript:

Penn ESE370 Fall2014 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 24: October 27, 2014 Distributed RC Wire and Elmore Delay

Previously: Equivalent RC Penn ESE370 Fall2014 -- DeHon 2

Previously: Chain without Inverters Penn ESE370 Fall2014 -- DeHon 3

Today Estimate delay in RC Network –Elmore delay calculation Wire Delay Apply to pass transistor circuits Penn ESE370 Fall2014 -- DeHon 4

Distributed RC Penn ESE370 Fall2014 -- DeHon 5

What is response? Penn ESE370 Fall2014 -- DeHon 6

SPICE Response Penn ESE370 Fall2014 -- DeHon 7

Intuition Look at series of R’s on path –Must move Q=V(  C) across each R Not as much as if both R’s precede C’s Penn ESE370 Fall2014 -- DeHon 8

Elmore Delay For each resistor Ri in path –Compute C Ri = sum of all C’s downstream of Ri –Delay through Ri is Ri×C Ri Penn ESE370 Fall2014 -- DeHon 9

Superposition Penn ESE370 Fall2014 -- DeHon 10

Superposition Penn ESE370 Fall2014 -- DeHon 11 R1 C1 R1 R2 C2 R1 R2 C1 C2

Superposition Penn ESE370 Fall2014 -- DeHon 12 R1 C1 R1 R2 C2 R1 R2 C1 C2 R1*C1(R1+R2)*C2 R1*(C1+C2)+R2*C2

Superposition not concurrent Don’t happen concurrently since must divide current Penn ESE370 Fall2014 -- DeHon 13

Superposition For R1=R2=R, C1=C2=C –Delay = 3RC Penn ESE370 Fall2014 -- DeHon 14 R1 R2 C1 C2 R1*(C1+C2)+R2*C2

Compare KCL: Setup Penn ESE370 Fall2014 -- DeHon 15 R1 R2 C1 C2 R1*(C1+C2)+R2*C2 Equations from KCL? (V1-V2)/R1 = (V2-V3)/R2 + C1(dV2/dt) (V2-V3)/R2=C2(dV3/dt) V2 V3

Rearrange Penn ESE370 Fall2014 -- DeHon 16 R1 R2 C1 C2 R1*(C1+C2)+R2*C2 (V1-V2)/R1 = (V2-V3)/R2 + C1(dV2/dt) V1/R1=V2/R1+V2/R2-V3/R2+C1(dV2/dt) (V2-V3)/R2=C2(dV3/dt) V2=V3+R2*C2(dV3/dt) V2 V3 ALGEBRA (will skip)

Substitute Penn ESE370 Fall2014 -- DeHon 17 R1 R2 C1 C2 R1*(C1+C2)+R2*C2 V1/R1=V2/R1+V2/R2-V3/R2+C1(dV2/dt) = V2(1/R1+1/R2)-V3/R2+C1(dV2/dt) V2=V3+R2*C2(dV3/dt) V1/R1=(V3+R2*C2(dV3/dt))(1/R1+1/R2)- V3/R2+C1(dV3/dt+R2*C2*d 2 V3/dt) V2 3 ALGEBRA (will skip)

Multiply by R1 Penn ESE370 Fall2014 -- DeHon 18 R1 R2 C1 C2 R1*(C1+C2)+R2*C2 V1/R1=(V3+R2*C2(dV3/dt))(1/R1+1/R2) -V3/R2+C1(dV3/dt+R2*C2*d 2 V3/dt) V1=V3+(R1*C2+R2*C2+R1*C1)(dV3/dt )+R2*C2*R1*C1*(d 2 V3/dt) V2 V3 ALGEBRA (will skip)

Simplify Problem Penn ESE370 Fall2014 -- DeHon 19 R1 R2 C1 C2 R1*(C1+C2)+R2*C2 V1=V3+(R1*C2+R2*C2+R1*C1)(dV3/dt )+R2*C2*R1*C1*(d 2 V3/dt) Simplify R1=R2=R, C1=C2=C V1=V3+(3RC)dV3/dt+(RC) 2 dV3/dt V2 V3

Exponential Solution Penn ESE370 Fall2014 -- DeHon 20 R1 R2 C1 C2 R1*(C1+C2)+R2*C2 V1=V3+(3RC)dV3/dt+(RC) 2 dV3/dt V3=A(1+e xt ) V1=A+Ae xt +(3RC)x Ae xt +(RC) 2 x 2 Ae xt A=V1 0=1+(3RC)x+(RC)x 2 V2 V3

KCL-Based Solution Penn ESE370 Fall2014 -- DeHon 21 R1 R2 C1 C2 R1*(C1+C2)+R2*C2 V3=A(1+e xt ) 0=1+(3RC)x+(RC)x 2 Quadratic Equation: V2 V3

SPICE Response Penn ESE370 Fall2014 -- DeHon 22

Elmore Delay For each resistor Ri in path –Compute C Ri = sum of all C’s downstream of Ri –Delay through Ri is Ri×C Ri Penn ESE370 Fall2014 -- DeHon 23

Apply Y What is Elmore delay? Penn ESE370 Fall2014 -- DeHon 24

Apply to Y Imagine shorting A and B Penn ESE370 Fall2014 -- DeHon 25 A B

Apply Y 1000  ×3pF +1000  ×1pF =4ns Penn ESE370 Fall2014 -- DeHon 26

SPICE Response Penn ESE370 Fall2014 -- DeHon 27

Elmore Delay For each resistor Ri in path –Compute C Ri = sum of all C’s downstream of Ri –Delay through Ri is Ri×C Ri Penn ESE370 Fall2014 -- DeHon 28

Wire Penn ESE370 Fall2014 -- DeHon 29

Wire Capacitance Penn ESE370 Fall2014 -- DeHon 30

Wire Resistance Penn ESE370 Fall2014 -- DeHon 31

Wire as RC Ladder Penn ESE370 Fall2014 -- DeHon 32

Wire Delay as f(L) Measure wire length in units –Say –Each lambda have Cunit, Runit Capacitance and resistance of wire of length Penn ESE370 Fall2014 -- DeHon 33

Wire Delay Delay of Wire N units long: Runit*(N*Cunit) +Runit((N-1)*Cunit +Runit*(N-2)*Cunit+… +Runit*Cunit =(Runit*Cunit)*(N+N-1+N-2+….1) Penn ESE370 Fall2014 -- DeHon 34

Sum of integers What’s the sum of the integer 1 to N? N+N-1+N-2+…1 Penn ESE370 Fall2014 -- DeHon 35

Sum of integers What’s the sum of the integer 1 to N? N+N-1+N-2+…1 Penn ESE370 Fall2014 -- DeHon 36

Wire Delay Wire N units long: Runit*(N*Cunit)+Runit((N-1)*Cunit +Runit*(N-2)*Cunit+…+Runit*Cunit =(Runit*Cunit)*(N+N-1+N-2+….1) =Runit*Cunit*N 2 /2 Penn ESE370 Fall2014 -- DeHon 37

Lumped RC Wire? What would the delay be if we treated the wire as lumped R and C? Penn ESE370 Fall2014 -- DeHon 38 Rwire = N×RunitCwire = N×Cunit

Wire Delay Rwire = N*Runit Cwire=N*Cunit Wire delay = Runit*Cunit*N 2 /2 Wire delay = 0.5 * Rwire*Cwire Half the delay of lumped RC product Quadratic in length of wire Penn ESE370 Fall2014 -- DeHon 39

Wire Delay Wire N units long: =Runit*Cunit*N 2 /2 With –Runit=1000  –Cunit=1pF Penn ESE370 Fall2014 -- DeHon 40

RC Ladder Penn ESE370 Fall2014 -- DeHon 41 Runit=1000  Cunit=1pF

Animation http://www.research.ibm.com/people/r/r estle/Animations/DAC01top.html Penn ESE370 Fall2014 -- DeHon 42

Apply to Pass Transistor (and CMOS) Penn ESE370 Fall2014 -- DeHon 43

Pass TR xor Delay when B=1? Penn ESE370 Fall2014 -- DeHon 44

Pass transistor xor Delay when B=0? –Start with equivalent RC circuit Penn ESE370 Fall2014 -- DeHon 45

Unbuffered Circuit  Delay? Penn ESE370 Fall2014 -- DeHon 46

Unbuffered Circuit  Delay? Penn ESE370 Fall2014 -- DeHon 47

Unbuffered Delay as a function of number of stages? Penn ESE370 Fall2014 -- DeHon 48

CMOS xor Delay with Cdiff>0? Penn ESE370 Fall2014 -- DeHon 49

Idea Lumped wiring calculation is pessimistic –Not all capacitance at end of wire Elmore delay calculation allows us to estimate Wires are distributed RC –Half delay lumped calculation –Still quadratic in length Penn ESE370 Fall2014 -- DeHon 50

Admin Project –Should have feedback from milestone on canvas –Due Thursday Andre office hour start 4:30pm this Tue. 2 nd midterm next Monday (11/3) Penn ESE370 Fall2014 -- DeHon 51

Download ppt "Penn ESE370 Fall2014 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 24: October 27, 2014 Distributed RC Wire."

Similar presentations