Presentation is loading. Please wait.

Presentation is loading. Please wait.

Evolutionary physiology topics 1. Patterns 2. Processes.

Similar presentations


Presentation on theme: "Evolutionary physiology topics 1. Patterns 2. Processes."— Presentation transcript:

1 Evolutionary physiology topics 1. Patterns 2. Processes

2 1. Patterns How and why of particular transitions How and why did endothermic vertebrates evolve from ectothermic ancestors? Evolutionary physiology topics

3 Endothermy versus ectothermy scala naturae

4 Endothermy versus ectothermy

5 Advantages of endothermy: Stenothermy Aerobic metabolism Independent of environment

6 Endothermy versus ectothermy Advantages of ectothermy: Low energetic requirements

7 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 mammals Passerine birds reptiles metabolism (Wg -1 day -1 ) 0.1g 10g 1kg100kg1000kg

8 Endothermy versus ectothermy Advantages of ectothermy: Low energy requirements  Low food habitats

9

10

11

12 Endothermy versus ectothermy Advantages of ectothermy: Low energy requirements  Low food habitats  Fluctuating food habitats

13 Mt Chappell Island Flinders Island Cape Barren Island

14 Chappell Island tiger snake (Notechis ater serventyi) Short-tailed shearwater (Puffinus tenuirostris)

15 Gila monster (Heloderma suspectum)

16 Western banded gecko (Coleonyx variegatus)

17 Endothermy versus ectothermy Advantages of ectothermy: Low energy requirements  Low food habitats  Fluctuating food habitats  Small body dimensions

18 body length surface/volume

19 mammals: >20 g lizards:8% spp. < 1 g 80% spp. < 20 g salamanders: 20% spp. < 1 g 90% spp. < 20 g

20 Dwarf chameleon Monte Iberia Eleuth Dwarf gecko

21 Kitti’s hog-nosed bat Etruscan shrew W: 1.5-2.5 g FR: 4xW/day HR: 835 b/min RR: 661 p/min L: 29-33 mm

22 Endothermy versus ectothermy Advantages of ectothermy: Low energy requirements  Low food habitats  Fluctuating food habitats  Small body dimensions  Elongate body forms

23 height/diameter surface/volume diameter height

24 weasel (Mustela nivalis) wood rat (Neotoma sp.) energy loss: x2

25 Afrocaecilia taitanaDesmognathus ochrophaeus Bipes bipesAnguis fragilis

26 Opheodrys aestivus

27 Endothermy versus ectothermy Advantages of ectothermy: Low energy requirements  Low food habitats  Fluctuating food habitats  Small body dimensions  Elongate body forms  Low water habitats

28 Sauromalus obesus Scaphiopus couchii

29 Endothermy versus ectothermy Advantages of ectothermy: Low energy requirements  Low food habitats  Fluctuating food habitats  Small body dimensions  Elongate body forms  Low water habitats  Low oxygen habitats

30 Amblyrhynchus cristatus Iguana iguana

31 Neoseps reynoldsi

32 Scincus mitranus

33 Dilong paradoxus Xu et al. 2004. Nature 431: 680-684.

34 Dimetrodon (Pelycosauria) Moschops (Therapsida) Synapsida (mammal-like reptiles)

35 Endothermy in Mammalia: 1.RM x5 2.T b > Ta, 28°C < T b < 40°C 3.  T core < 1-2°C 4.M aero x5

36 Thermoregulation first  physiological version Synapsida evolve from small ectotherms increase in size (30-100 kg) become inertial homeotherms evolve insulation Tb constant, physiological benefits decrease in size increased metabolism improved insulation McNab 1978. Am. Nat. 112: 1-21.

37 Thermoregulation first  brain version Synapsida evolve from small ectotherms Tb constant, physiological benefits evolve larger, more complex brains Hulbert 1980.

38 Thermoregulation first  ecological version Synapsida evolve from small ectotherms Tb constant, physiological advantages evolve nocturnal habits Crompton et al. 1978. Nature 272: 333-336.

39 Aerobic capacity first  sustained ativity version Ruben 1995 Ann. Rev. Physiol. 57: 69-95. small change in basal metabolic rate minimal effect on thermoregulatory capacity large effect on maximal aerobic metabolic rate

40 Aerobic capacity first  parental care version Koteja 2000 Proc. R. Soc. Lond. 267: 479-484 small change in basal metabolic rate minieme verandering in thermoregulatie-capaciteit large effect on maximal aerobic metabolic rate necessary for locomotor costs related to parental care

41 1. Patterns How and why of particular transitions Testing a-priori-hypotheses  plastic responses are adaptive Evolutionary physiology topics

42 Dicerandra linearifolia Winn A.A. 1999. J. Evol. Biol. 12: 306-313. leaf length leaf thickness density of stomata

43 Winn A.A. 1999. J. Evol. Biol. 12: 306-313.

44

45 Beneficial acclimation hypothesis

46 Colder is better Hotter is better

47 Beneficial acclimation hypothesis Deleterious acclimation hypothesis

48 Beneficial acclimation hypothesis Escherichia coli Leroi et al. 1994.Proc. Natl. Acad. Sci. USA 91: 1917-1921.

49 Beneficial acclimation hypothesis Escherichia coli 37°32° competition 41.5° > > Leroi et al. 1994.Proc. Natl. Acad. Sci. USA 91: 1917-1921. 32° 41.5° acclimation

50 Beneficial acclimation hypothesis Bicyclus anynana Geister T.L. & Fischer 2007. Behav. Ecol. 18: 658-664.

51 Beneficial acclimation hypothesis 20° 27° development larvae 20,20° 20,27° 27,27° 27,20° 20,20° 20,27° 27,27° 27,20° 20° 27° 20° acclimation

52 Beneficial acclimation hypothesis Oribatida Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

53 Marion Island, Prince Edward Islands

54

55 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. 10° acclimation 7 days 5° 0°15° Halozetes marinus Halozetes marionensis Halozetes belgicae Halozetes fulvus Podacarus auberti Locomotor tests -5° up to 35°

56 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. Halozetes marinus Halozetes marionensis Halozetes belgicae Halozetes fulvus Podacarus auberti deleterious acclimation

57 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. 15°C 10°C 5°C 0°C

58 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. Halozetes marinus Halozetes marionensis Halozetes belgicae Halozetes fulvus Podacarus auberti deleterious acclimation beneficial acclimation

59 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. 15°C 10°C 5°C 0°C

60 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. Halozetes marinus Halozetes marionensis Halozetes belgicae Halozetes fulvus Podacarus auberti colder is better deleterious acclimation beneficial acclimation

61 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. 15°C 10°C 5°C 0°C

62 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. Halozetes marinus Halozetes marionensis Halozetes belgicae Halozetes fulvus Podacarus aubertigeen plasticiteit colder is better deleterious acclimation beneficial acclimation

63 Beneficial acclimation hypothesis Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644. 15°C 10°C 5°C 0°C

64 1. Patterns How and why of particular transitions Testing a-priori-hypotheses  plastic responses are adaptive  phenotypic plasticity ~ environmental variability Evolutionary physiology topics

65 Rana temporaria Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

66 14 small islands 10 clutches < 20-50 eggs depth pools variability drying / island lab: 4 tadpoles / container 2 regimes: Constant & Drying developmental time ~ regime (D<C) developmental time ~ island phenotypic plasticity ~ variability island Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

67 constant drying developmental time 28 17 island 1 (homo) plasticity=11 28 10 island 2 (hetero) plasticity=18 devolopmental time ~ regime (D<C) developmental time ~ island phenotypic plasticity ~ variability island

68 Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

69 1. Patterns How and why of particular transitions Testing a-priori-hypotheses  plastic responses are adaptive  phenotypic plasticity ~ environmental variability  a jack-of-all-trades is a master of none Evolutionary physiology topics

70 sprint speed ‘specialist’ ‘generalist’ lichaamstemperatuur sprint speed

71 Laudakia stellio lichaamstemperatuur rank Huey R.B. & Hertz P.E. 1984. Evolution 38:441-444.

72 Amoeba lichaamstemperatuur rank

73 Escherichia coli Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

74 Escherichia coli Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421. 5.3 6.3 7.0 7.8 2000 generations non-active

75 Escherichia coli Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421. 5.3 6.3 7.0 7.8 2000 generations non-active C > P in constant and fluctuating environments

76 Escherichia coli Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421. 5.3 6.3 7.0 7.8 2000 generations non-active R > P in some fluctuating and constant environments

77 Escherichia coli Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421. 5.3 6.3 7.0 7.8 2000 generations non-active B > P in fluctuating environments, but not in 7.8

78 Escherichia coli Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421. 5.3 6.3 7.0 7.8 2000 generations non-active A > P in constant, not in fluctuating environments

79 Escherichia coli Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421. (1) adaptation to cycling pH, randomly changing pH and constante pH follows different patterns (2) in variable environments generalists evolve, in constant environments specialists evolve; (3) in variable environments the ‘cycling’ lines have a higher fitness than the ‘random changes’ lines; (4) an acclimation benefit (BAH) was not always detected.

80 Goodman et al. 2007. Evol. Ecol. Res. 9: 527-546. 18 Lygosominae sprinting, jumping, clinging, climbing

81 1. Patterns How and why of particular transitions Testing a-priori-hypotheses  plastic responses are adaptive  phenotypic plasticity ~ environmental variability  a jack-of-all-traits is a master of none  symmorphosis: design satisfies need Evolutionary physiology topics

82 Evolutionary physiology topics

83 Evolutionary physiology topics king pin

84 one half rule

85 V0 2 max mitochondria in muscle cells capillary design (volume, surface) hematocrite heart stroke volume surface pulmonary vesicles diffusion capacity membrane Weibel et al. 1991. Proc.Natl. Acad. Sci. USA 88: 10357-10361

86 1. Patterns 2. Processes natural selection Evolutionary physiology topics

87 performance variation fitness variation design variation genetic variation performance gradient fitness gradient quantitative genetics physiology morphology biochemistry kinematics biomechanics ecology behavioral biology

88 LeGalliard et al. 2004. Nature 432: 502-505. Zootoca vivipara juvenile survival initial endurance limited food supply abundant food supply

89 1. Patterns 2. Processes natural selection sexual selection intrasexual selection (male-male combat) intersexual selection (female choice) Evolutionary physiology topics

90 deCarvalho et al. 2004. Anim. Behav. 68: 473-482. Neriene litigiosa

91 deCarvalho et al. 2004. Anim. Behav. 68: 473-482. Neriene litigiosa Time (min) Joint male energy use (E  W) 1200 800 600 400 200 0 012345678 Phase 1 Phase 2 Phase 3 Locomotion X 3.5 X 7.4 X 11.5

92 Necora puberUca lactea Thorpe et al. 1995. Anim. Behav. 50: 1657-1666 Matsuma & Murai 1995. Anim. Behav. 69: 569-577 anaerobic respiration

93 Agkistrodon contortix Schuett & Grober 2000 Physiol & Behav 71: 335-341.

94 Agkistrodon contortix Schuett & Grober 2000 Physiol & Behav 71: 335-341.

95 Anolis sagrei

96

97 Evolutionary physiology implications

98 Evolutionary physiology implications

99 Evolutionary physiology implications

100 Evolutionary physiology implications http://www.sfecologie.org/blog/2011/09/30/evolrescueonline-topic-1/


Download ppt "Evolutionary physiology topics 1. Patterns 2. Processes."

Similar presentations


Ads by Google