Download presentation

Presentation is loading. Please wait.

Published byTrenton Hawse Modified over 3 years ago

1
Parameter identifiability, constraints, and equifinality in data assimilation with ecosystem models Dr. Yiqi Luo Botany and microbiology department University of Oklahoma, USA Land surface models and FluxNET data Edinburgh, 4-6 June 2008 (Luo et al. Ecol Appl. In press)

2
Observed Data Prior knowledgePosterior distribution Parameter identifiability Inverse model Constrained Edge-hitting Equifinality

3
Wang et al. (2001) ------ a maximum of 3 or 4 parameters can be determined. Wang et al. (2001) ------ a maximum of 3 or 4 parameters can be determined. Braswell et al. (2005) ------ 13 out of 23 parameters were well-constrained. Braswell et al. (2005) ------ 13 out of 23 parameters were well-constrained. Xu et al. (2006) ------ 4 or 3 out of 7 parameters can be constrained, respectively under ambient and elevated CO 2. Xu et al. (2006) ------ 4 or 3 out of 7 parameters can be constrained, respectively under ambient and elevated CO 2. Identiable parameters

4
Three methods to examine parameter identifiability 1.Search method 2.Model structure 3.Data variability

5
Harvard Forest EMS-Tower Eddy flux data

6
CO 2 flux CO 2 flux H 2 O flux H 2 O flux Wind speed Wind speed Temperature Temperature PAR PAR Relative humidity Relative humidity Hourly or half-hourly Eddy flux technology

7
Leaf-level Photosynthesis Sub-model Canopy-level Photosynthesis Sub-model System-level C balance Sub-model Model

8
Table 1 Parameters information

9
Develop prior distribution Develop prior distribution Apply Metropolis-Hasting algorithm Apply Metropolis-Hasting algorithm a) generate candidate p from sample space b) input to model and calculate cost function c) select according to decision criterion d) repeat Construct posterior distribution Construct posterior distribution Bayesian inversion

12
Conditional Bayesian inversion Bayesian inversion Bayesian inversion Bayesian inversion Bayesian inversion

14
Fig. 2 Decrease of cost function with each step of conditional inversion

16
Conclusions Conditional inversion can substantially increase the number of constrained parameters. Conditional inversion can substantially increase the number of constrained parameters. Cost function and information loss decrease with each step of conditional inversion. Cost function and information loss decrease with each step of conditional inversion.

17
Measurement errors and parameter identifiability

18
Leaves X1Woody X2Fine Roots X3 Metabolic Litter X4Structural Litter X5 Microbes X6 Slow SOM X7 Passive SOM X8 GPP TECO – biogeochemical model

19
No. of parameter 8 12 8 3

20
Exit rates

21
Transfer coefficients

22
Initial values

23
Pool sizes without data

24
Pool sizes with data and different SD

25
Conclusion Magnitudes of measurement errors do not affect parameter identifiability but influence relative constraints of parameters

26
Base model GPP Leaves X1Stems X2Roots X3 Metabolic L. X4Struct. L. X5 Microbes X6 Slow SOM X7 Passive SOM X8

27
Simplified models Plant C Litter C GPP CO 2 Soil C Plant C Litter C GPP CO 2 O Soil C Miner. C 3P model 4P model

28
Simplified models 6P model7P model GPP Leaves X1Stems X2Roots X3 Litter X4 Slow C X5 Miner. Soil C X6 GPP Leaves X1Stems X2Roots X3 Metabolic L. X4 Struct. L. X5 Microbes X6 Soil C X7

29
3P model-parameter constraints Plant CLitter C Soil C

30
4P model-parameter constraints Plant CLitter C Slow Soil C Passive Soil C

31
6P model-parameter constraints Foliage Litter CSlow Soil CPassive Soil C WoodyFine roots

32
7PM model-parameter constraints Foliage Metabolic L. C Structure L. CMicrobes C Woody Fine roots Soil C

33
8P model-parameter constraints

34
Conclusion Differences in model structure are corresponding to different sets of parameters. The number of constrained parameters varies with data availability

Similar presentations

OK

Linear Programming – Simplex Method: Computational Problems Breaking Ties in Selection of Non-Basic Variable – if tie for non-basic variable with largest.

Linear Programming – Simplex Method: Computational Problems Breaking Ties in Selection of Non-Basic Variable – if tie for non-basic variable with largest.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google

Nouns for kids ppt on batteries Economics ppt on lpg Ppt on j&k tourism Ppt on mauryan architecture Ppt on c language pointers Ppt on various dance forms of india Flexible display ppt on tv Ppt on use of geotextiles in civil engineering Ppt on natural and artificial satellites in space Ppt on p&g products rebate