Presentation is loading. Please wait.

Presentation is loading. Please wait.

A linear collider for the future Physics, Accelerator, detectors Yannis Karyotakis.

Similar presentations


Presentation on theme: "A linear collider for the future Physics, Accelerator, detectors Yannis Karyotakis."— Presentation transcript:

1 A linear collider for the future Physics, Accelerator, detectors Yannis Karyotakis

2 2 Physics Today  A very successful SM describes our particle word at low energy  BUT open questions still unanswered: –Electroweak symmetry breaking ( Higgs ??) –Unification of the forces ( Supersymetrie ??) –Space time structure at short distances ( extra dims ?) –Dark matter and energy ( ??? ) Fundamental discoveries are expected with LHC, high precision measurements with LC to constrain our theory

3 3 + Unitarity restored with a Higgs M H < 700 GeV New physics states E < 4  gM W ~1TeV New Physics < 1TeV Unitarity is violated at perturbatif level

4 4 The Higgs around the corner  Precision data (LEP,SLD,CDF,D0) favor a light SM Higgs Summer ‘05 M H > GeV from direct searches

5 5 Le CERN découvre le Higgs Après 20 ans d’efforts, enfin au CERN, l’expérience LHCb met la main sur le Higgs, aussitôt confirmé par CMS. Lire en Page 2 l’interview du Pr B.Pietrzyk 9 Indeed we all expect LHC to discover the Higgs BUT Is it really the Higgs ??? Must study its properties and compare with those from SM

6 6 Higgs ILC For M H cm =500GeV and L=500fb Higgs events !!

7 7 Is the mass generator ?  Couplings  fermion and gauge boson masses Measure Br’s  Rich phenomenology for M H < 2*M W bb  g  bb / g  bb  2 % cc  g  cc / g  cc  22.5 %      g   / g    5 % WW *  g  ww / g Hww  2 % ZZ  g  / g HZZ  6 % gg  g  gg / g  gg  12.5 %  g  / g   10 % Total width is measured m i = v k i

8 8 Higgs Total width unknown

9 9 Higgs self coupling  Cross sections very low  Total  = 0.18fb or 92 events for L=500fb cm =500GeV and m h =120GeV  Only 0.1 fb useful to measure hhh   increases with E cm 4 or 6 jets events, b enhanced : need to separate W/Z, b tagging

10 10 Scalar Higgs ?  If h  J≠1 (LHC)   versus E cm  Angular distributions –  CP even/odd –  * reflects CP nature ee->Zh (Higgsstrahlung threshold)

11 11 SUSY  Possibility to unify forces and couplings  Offers a non baryonic dark matter candidate A priori, some super partners are light < 1TeV Hundreds of new parameters At a LC sparticles are produced through simple processes using eventually polarized electrons allowing measurements of masses quantum numbers and couplings

12 12 s masses scalars

13 13 ILC and Cosmology  Is SUSY LSP responsible for Cold Dark Matter ? –Need to study LSP properties, need precision measurements to compare with future experiments

14 14

15 15 Towards an ILC  We recommend that LC be based on super- conducting RF technology. –... we are recommending a technology not a design. We expect that the final design be developed by a team drawn from the combined warm and cold linear collider communities...

16 16 ILC parameters  1st stage –Energy 200→500 GeV, scannable –500 fb -1 in first 4 years  with option of x2 lum. in additional 2 years –Beam energy precision < 0.1% –Electron polarization > 80% –Two IRs  2nd stage –Energy upgrade to ~1TeV –~1000 fb -1 in 3-4 years  Options – ,  e-, e-e-, Giga-Z ILC satisfies the feasibility criteria set by the International Technical Review Committee

17 The GDE Plan and Schedule Global Design EffortProject Baseline configuration Reference Design ILC R&D Program Technical Design Expression of Interest to Host International Mgmt LHC Physics CLIC

18 18 The Key Decisions Critical choices: luminosity parameters & gradient

19 19 Baseline Configuration Document

20 20 Need higher Energy ?? 3-5TeV

21 21

22 22

23 23 Detector concepts for ILC SID LDC GLD

24 24 Calorimetry drives the detector design

25 25 Momentum resolution  Higgs’ mass reconstruction

26 26 b tagging  Need to measure Higgs to c coupling –H  cc only 10% of H  bb –Huge background measurement, non b and 2 b jets

27 27 Forward coverage  Very important for low  m SUSY particles  Cosmology favors low mass difference Veto needed down to 0.2 – 0.6 deg

28 28 Calorimetry  A 100 Mpixel jet picture –Si and Tungsten Need for a highly dense and highly segmented calorimetry

29 29 ECAL Pixels  Prototypes in hands of 16  Prototypes in hands of 16 mm 2  Designing for 12 or 1024 pixels per 6” wafer  Designing for 12 mm 2 or 1024 pixels per 6” wafer  ->  +  o

30 30 Particle flow Jet composition : 64 % charged particles 21% photons 11% neutral hadrons PFA : Measure charged track momentum Separate charged hits from neutral Measure photons and neutral hadrons in the calorimeters Perfect PFA 14%/sqrt(E) Assumed resolutions ECAL 11%/√E, HCAL 50%/√E +4%

31 H.Weerts Detector outline considerations Architecture arguments  Calorimeter (and tracker) Silicon is expensive, so limit area by limiting radius (and length)  Maintain BR 2 by pushing B (~5T)  Excellent tracking resolution by using silicon strips  5T field allows minimum VXD radius.  Do track finding by using 5 VXD space points to determine track – tracker measures sagitta. Exploit tracking capability of EMCAL for V’s.  Accept the notion that excellent energy flow calorimetry is required, use W-Si for EMCAL and the implications for the detector architecture… This is the monster assumption of SiD (MB quote)

32 H.Weerts Conception / Optimisation SiD

33 H.Weerts Join the SiD effort

34 34 Conclusions  Reaching the TeV scale is an appointment with new physics.  It is important we all together design the best accelerator and detectors to unveil the unknown.  The linear collider is the future for high energy physics and for the next generation, but it is prepared now.

35 35 Backup

36 36

37 37

38 38 spin measurement

39 39 Masses summary LHC+ILC complementary coverage over the sparticle spectrum

40 40 More on Couplings  SUSY, multi Higgs, extra dimensions different from SM couplings.

41 41 Higgs self coupling (2) Process hhZ sel. vvhh-sel. Backg signal Eff. (%) Eff. (%) 30.2%37.3% ‘ hh’ ‘hhZ’ P.Gay Expected precision d / ~ 20% per channel for 1ab -1

42 42 Higgs and MSSM  Five Higgs –h 0 light m h < 140 GeV –H 0, A 0, H  typically masses up to 1TeV

43 43 ECAL overview CAD overview R 1.27 m ( 20 layers x 2.5 mm thick + 10 layers x 5 mm thick) Tungsten ~ 1mm Si detector gaps Preserve Tungsten R M eff = 12mm Highly segmented Si pads 12 mm 2

44 44 Cost Drivers Civil SCRF Linac

45 45

46 46 Vous avez dit Linéaire ?? U sr énergie perdue par tour 100 GeV/ faisceau, 27Km  2GeV/tour Extrapolation à 250 GeV/faisceau, r=150Km (r~E 2 ) et U sr = 13 GeV/tour Pour L ~ cm -2 s -1 alors I ~ 2 A donc puissance RF = 26 GW

47 47 La luminosité* pour tous (1) Luminosité ~ Trains de n b paquets, faisceaux gaussiens f c : fréquence de collision par paquets Nb : nombre de particules / paquets A : recouvrement des faisceaux *collisionneurs e+e- f rep fréquence de répétition HD auto focalisation (>1)  dimensions des faisceaux Rappel : Section efficaces ~ 1/E 2 cm donc L ~ E 2 cm

48 48 Nano faisceaux Quadrupoles puissants au point d’interaction Grande densité de charge Forte auto-focalisation  H D augmente Beamstrahlung   Champ E ~GV/m !!!! Faisceau défléchi, émission de   Dilution de la lumi pour Ecm Création des paires e+e-  bruit de fond Sensibilité aux vibrations des éléments optiques et spécialement des FF quads

49 49 Vibrations Mouvements du sol Bruits culturels générés par l’activité de la machine Eau de refroidissement Pompes

50 50 Feed back par le faisceau Déflection mutuelle et mesurable des faisceaux  bb  150  rad Mesure de l’angle (e+) par BPM Correction des e- par dipôle et pour le paquet suivant ~2  f 0 /f rep Pour un quad qui oscille avec une fréquence f 0 et un taux de répétition du faisceau f rep, l’efficacité du feed back ~2  f 0 /f rep f rep limitera donc ce feed back

51 51 Timing and IR layout

52 52 Proof of principle for CLIC The three R1 issues are:  R1.1 Test of damped accelerating structure at design gradient and pulse length  R1.2 Validation of the drive beam generation scheme with a fully loaded linac  R1.3 Design and test of an adequately damped power-extraction structure, which can be switched ON and OFF The two R2 issues are:  R2.1 Validation of beam stability and losses in the drive beam decelerator, and design of a machine protection system  R2.2 Test of a relevant linac sub-unit with beam All five of these key feasibility issues can be demonstrated in CTF3.

53 53 Measuring Higgs Mass Recoil mass from e + e -  ZH Upstream and downstream spectrometers

54 54 SM Higgs versus MSSM For m A < 600 GeV likely to distinguish


Download ppt "A linear collider for the future Physics, Accelerator, detectors Yannis Karyotakis."

Similar presentations


Ads by Google