Presentation is loading. Please wait.

Presentation is loading. Please wait.

H2 & Fuel Cell System Technology at Airbus

Similar presentations


Presentation on theme: "H2 & Fuel Cell System Technology at Airbus"— Presentation transcript:

1 H2 & Fuel Cell System Technology at Airbus
Prepared by Alain Chevalier Head of Policy & Development Powerplant CoC Marc Maurel Head of Powerplant & Environment R&T Airbus Research Directorate H2 & Fuel Cell System Technology at Airbus 26 Sept 08 Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

2 Agenda Airbus Vision : Greener Aircraft Air Traffic Growth
Oil Price per Barrel The Cost Increase in Energy Resource Alternative Fuels : A Necessity Alternative Fuel Road Map H2 & LNG Technologies : History Outcome of EC Cryoplane Project Fuel Cells Systems at Airbus : Motivation The Fuel Cell System Functional Principle Airbus Fuel Cell System Stepwise Strategy Benefits from Multi-Functional Fuel Cell Application Low Emission System : Fully Integrated Fuel Cells Airbus Fuel Cell Emergency Power System Other Applications : H2 Injection into Engines Other Applications : FCS Architecture Studies Conclusion Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

3 Airbus Vision – Greener Aircraft
The four ACARE GOALS 2020 for the Environment: To reduce fuel consumption and CO2 emissions by 50% To reduce perceived external noise by 50% To reduce NOX by 80% To make substantial progress in reducing the environmental impact of the manufacture, maintenance and disposal of aircraft and related products. EADS CEO Louis Gallois at Airbus ISO14001 Certification in Paris, 14 June 2007: 'We have to increase our efforts in other research areas… Airbus has accumulated significant experience in hydrogen technology ... We also need to consider fuel cell technology to power ground operations at airports. Eliminating CO2 emissions on the ground is a concrete vision I have and I believe there is huge potential. We can’t afford to miss a single opportunity.’ BDLI Technologieforum mit Airbus CEO Dr. Thomas Enders am 11. Oktober 2007 in Berlin: „.. Wir wollen unsere Flugzeuge noch sauberer, noch sparsamer, noch leiser machen und damit natürlich auch unsere Chancen am Markt erhöhen...Wir werden die Öko-Effizienz unserer Produkte zu einem bestimmenden Maßstab machen, an dem wir unsere Forschung messen.“ Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

4 Air Traffic Growth Terrorist attacks against US 1st Gulf War
Revenue passenger kilometres (RPK) is a measure of the volume of passengers carried by an airline What will be the future with oil crisis ? RPK : Revenue Passenger Kilometres Alternative Fuels For Aircraft - Presentation to JMT - EEDR - Ref. X71PR Issue 1 June 2008

5 Kerosine cost approx. 1.5 * Crude Oil cost
Oil Price per Barrel Source : NYMEX (New York Mercantile Exchange Kerosine cost approx. 1.5 * Crude Oil cost Alternative Fuels For Aircraft - Presentation to JMT - EEDR - Ref. X71PR Issue 1 June 2008

6 The Cost Increase In Energy Resource
Unavoidable due to Crude Oil price increase Expected CO2 Tax from the European Trading Scheme Expected cost for CO2 Capture & Sequestration during the synthetic kerosine production process Assuming that: 3,5 Tons CO2 / 1 Ton kerosine 1 Ton kerosine = 1,5 x 1 T crude oil Alternative Fuels For Aircraft - Presentation to JMT - EEDR - Ref. X71PR Issue 1 June 2008

7 Alternative Fuels : A Necessity
US $ ~150 (7/08) A réactualiser avec le prix du barril actuel! USGS : US Geological Survey Cette planche montre l’apparition probable du pic de production avec différentes estimations des ressources mondiales en pétrole et 4 scenario de tx de croissance de production Le rapport R/P (Reserves to Production) pour la production après le pic est basé sur le pic de produciton aux US en 1970 En conclusion : si on utilise une évaluaiton moyenne des ressources (3000 BB) et un tx de production annuel de 2%, on s’attend à un pic autour de 2037 Alternative Fuels For Aircraft - Presentation to JMT - EEDR - Ref. X71PR Issue 1 June 2008

8 Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref
Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

9 LH2 et LNG Technologies : History
USA : modified B59 (1956) Russia : NK-88 Engine onto Tu-155, in European Project CryoPlane ( ) led by Airbus Jusque là, nous nous sommes intéressés aux aspects physiques, environnementaux, opérationnels, sécuritaires et infrastructurels. Reste à parler faisabilité technique et compétitivité économique de la solution cryogénique, les 2 mamelles du métier d’avionneur. En fait, l’une des premières expériences en la matière remonte aux années 1950, sur un B57 modifié. Mais c’est en 1988 que la Russie a testé le LH2 sur un Tupolev de transport civil. On voit ici le moteur modifié, avec l’échangeur destiné à réchauffer le fluide avant injection. Plus récemment, entre 2000 et 2002, a été étudié en Allemagne, sous l’égide d’Airbus, le projet de gros porteur à hydrogène CryoPlane. Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

10 Outcome of EC « CryoPlane » Project (1/2)
Technologies to be developed LH2 Tanks Metrology/probes, pipes, valves and seals and associated life time in aeronautics Systems Open questions Pumps cavitation phenomena at idle Engines transient behaviour Icing Power Systems Architecture (Fuel Cells ?) Consequences at A/C level (eg for 4000 NM) Empty Weight +25% Drag +10% MTOW 0 (LH2) to +10% (LNG) Les principales conclusions techniques au sujet du CryoPlane sont résumées sur cette planche. Des technologies à développer ont été clairement mises en évidence. Il s’agit d’abord des réservoirs. Mais toute l’instrumentation classique doit être revue (tels les sondes, débitmètres, etc.) pour garantir une fiabilité sur la durée de vie de l’avion. Et puis une partie des systèmes doit être repensée. Quelques autres points restent ouverts, comme la cavitation de la pompe au ralenti, le comportement transitoire des moteurs, les aspects givrage ou l’architecture des systèmes au cas où les piles à combustible aient suffisamment progressé. Au terme de l’étude, les ingénieurs sont arrivés aux conclusions suivantes pour cet avion destiné à des missions de 4000 nautiques (genre A330) : la masse à vide augmenterait de manière significative (+25%) et la traînée totale de l’ordre de 10%, la meilleure densité énergétique du LH2 notamment permettant de limiter la pénalisation en termes de masse au décollage. Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

11 Outcome of EC « CryoPlane » Project (2/2)
Increase of Operational costs and for 4000 NM LH2 at 5$/kg LH2 at 2$/kg LNG at 1,6$/kg LNG at 1$/kg 1$/gal. > +100 %  +25 % 2$/gal.  +15 %  +5 % Reference Pour conclure sur la vision Airbus, juste une dernière planche, comme promis, sur de basses considérations économiques ! Dans ce tableau est représenté le surcoût opérationnel direct approximatif pour un avion de type A330 utilisant un carburant cryogénique plutôt que le kérosène, sur une mission de 4000 nautiques. On fait 2 hypothèses sur les prix du LH2, idem sur le prix du LNG, en supposant que les coûts de production vont baisser. Dans les conditions actuelles du marché pétrolier, il est évident que la compétitivité des solutions cryogéniques est nulle. Mais, ce qui est plus inquiétant, c’est que même avec un doublement du prix du baril (c’est-à-dire aux alentours de 100 $US, ce qui correspondrait réellement à une situation de crise pétrolière), avec un hydrogène 2,5 fois moins cher qu’aujourd’hui, le surcoût resterait de 15%. Pour le LNG, avec une baisse supposée de 40% (ce qui est peu probable dans un contexte d’épuisement des ressources), le surcoût sera moindre, mais de 5% tout de même. A l’aune de ces quelques considérations, il semble donc difficilement concevable de retrouver à terme des conditions économiques aussi favorables que dans la période actuelle (le baril de brut n’étant pas encore si cher que ça, par rapport aux chocs pétroliers de 1974 et 1979). Peak situation Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

12 Fuel Cells System at Airbus : Motivation
Fuel cell technology offers a chance to approach these goals: enhanced energy efficiency emission free ground operation emission reduction during whole flight cycle additional synergy benefits through fuel cell by-products (inert gas, water) Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

13 The Fuel Cell System Functional Principle
A I R H2 FROM REFORMER OR H2 CRYOGENIC ADDITIONAL TANK HEAT H2 ELECTRICITY FUEL CELL SYSTEM Fuel Cell Operation: Continuous change of chemical energy (hydrogen and oxygen) directly into electrical energy and heat without combustion G A S WATER Oxygen Depleted Air Hydrogen + Oxygen >> Electrical power + Water + Heat Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

14 Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref
Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

15 Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref
Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

16 Low Emission System : Fully Integrated Fuel Cells
Hydrogen supplied fuel cell Fuel and CO2: Reduced fuel burn = lower CO2 emissions No pollutants : (HC, NOx, CO, SO2) Less noise Batteries Emergency Power Auxiliary Power Ground Support Equipment Water Refilling Truck Fuel Tank inerting system Fuel cell technology will initiate a step change in aircraft systems architecture Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

17 Airbus Fuel Cell Emergency Power System
First time ever: Hydrogen supplied fuel cell system operation on-board of commercial aircraft Hydrogen supplied fuel cell system integrated into electric and hydraulic network Hamburg, 27 July 2007: Successful first flight test performed Toulouse, 15 February 2008: Flight controls powered by fuel cell in flight Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

18 Other Applications : H2 Injection into Engines (1/3)
Current DPAC Project (2008 –2009) in partnership with SAFRAN (SNECMA Moteur) Main principle: Hydrogen accelerates the combustion kinetics of kerosene in air Concept: Injection of a small amount of gaseous Hydrogen only during idle modes (roughly 6 g/s H2 for an A30X SNECMA engine) Reduction of combustor volume for given emission rates at idle and relight envelope Lower production rate of NOx at full power Beneficial Impact on emissions expected Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

19 Supporting SNECMA Laboratory tests
Other Applications : H2 Injection into Engines (2/3) Supporting SNECMA Laboratory tests Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

20 Other Applications : H2 Injection into Engines (3/3)
SN first laboratory test results confirm NOx emissions benefit prediction Preliminary assessment of benefit at Aircraft level performed by Airbus but needs to be consolidated when NOx benefits at A/C level will be provided by SNECMA but Fuel Burn impact not negligible Additional risk assessment needed to clear H2 piping installation (burst zones, condensation…) Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

21 Other Applications : FCS Architectures Studies
ARCHIPAC : (Any) Fuel Reforming Technology Development for Fuel Cells Frame : Partnership with NGH-Y & “Ecole des Mines d’Albi” ( ) GAPPAC : FCS coupled with a small turbo machinery for Armoured Vehicle APU application (25 KW). Architectures studies and demonstrator Frame : French ANR Project “PAN-H 2006” ( ) Partnership : NGH-Y, Renault, GIAT (leader),… H2 Injection: Injection of a small amount of gaseous Hydrogen only during idle modes (roughly 6 g/s H2 for an A30X SNECMA engine) Reduction of combustor volume for given emission rates at idle and relight envelope Lower production rate of NOx at full power Impact on emissions (SNECMA evaluation) 8% of H2 in idle modes  -14% combustor volume  -13% LTO Cycle NOx Alternative Fuels For Aircraft - Presentation to JMT - EEDR - Ref. X71PR Issue 1 June 2008

22 Airbus needs Partnership !
Conclusion (2/2) To enable emission free operation of a fuel cell H2 is required on board of the A/C: Gaseous H2 for small fuel cell systems Liquid H2 for larger applications for fuel cells Therefore Airbus is interested in the following: Hydrogen Storage technology for A/C application (gaseous & liquid) Hydrogen infrastructure development Hydrogen price development expectations Environmentally friendly production technologies for H2 Reforming technologies Safety aspects Airbus needs Partnership ! Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

23 First successful demonstration of the technology achieved!
Conclusion (2/2) Airbus is fully committed to the fuel cell technology and its multiple application to achieve the ACARE 2020 goals First successful demonstration of the technology achieved! The integration of fuel cell technology in A/C will bring more improvements .... .... Airbus welcomes your questions! Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

24 © AIRBUS FRANCE S.A.S. Tous droits réservés. Document confidentiel.
Ce document et son contenu sont la propriété d’AIRBUS FRANCE S.A.S. Aucun droit de propriété intellectuelle n’est accordé par la communication du présent document ou son contenu. Ce document ne doit pas être reproduit ou communiqué à un tiers sans l’autorisation expresse et écrite d’AIRBUS FRANCE S.A.S. Ce document et son contenu ne doivent pas être utilisés à d’autres fins que celles qui sont autorisées. Les déclarations faites dans ce document ne constituent pas une offre commerciale. Elles sont basées sur les postulats indiqués et sont exprimées de bonne foi. Si les motifs de ces déclarations n’étaient pas démontrés, AIRBUS FRANCE S.A.S serait prêt à en expliquer les fondements. AIRBUS, son logo, A300, A310, A318, A319, A320, A321, A330, A340, A350, A380 et A400M sont des marques déposées. Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

25 Back-up materials Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

26 Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref
Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

27 Choices of each component based on technological survey and preliminary calculations
Reforming (continuation) Mature reforming processes in a short term (continuation) The Non-Catalytic Auto-Thermal Reforming at high temperature (N-GHY patented Process) H2 less concentrated than in the SR case Therefore, lower utilization rate in the fuel cell than in the SR case Less adapted to work under pressure (compressor needed for the AIR) NON Catalytic therefore INSENSIBLE to sulphur AIR H2 + CO + N2 + H2O + CO2 Carburant Carburant + EAU 1400°C Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

28 Networks 19 Members, 2 Associates & 25 Partners ALPHEA-H2(*)
Created in 1986 and supported since 1996 by a “Pôle de Compétences” in Lorraine/ Forbach Realise H2 technological & economical survey Develop Industries & government/lands interest for H2 Make studies & expertises around H2 area 19 Members, 2 Associates & 25 Partners Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

29 Fuel Cells & Hydrogen Joint Technology Initiative
The European Hydrogen and Fuel Cell Technology Platform Airbus involvement through EADS-IW Fuel Cell and Hydrogen Industry Workshops  October 13, Brussels, Autoworld Museum October Launch of the Fuel Cell and Hydrogen Joint Technology Initiative (JTI)    Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1

30 Overview By-Products X FIRE IN CASE OF NO INERTISATION WING ANTI ICING
With Moist Air Exhaust Dry Air Exhaust 30°C N2 87% O2 10% H20 2% Moist Air Exhaust °C N2 72% O2 10% H20 17% KEROSENE TANK INERTING With Dry Air Exhaust IN CASE OF NO INERTISATION Fuel Cell System °C 330 kW el 410 kW th CARGO BAY INERTING With Dry Air Exhaust FIRE EXTINGUISHING Cooling & Compression of Moist Air Exhaust Use e.g. Cargo Bay X FIRE Hydrogen Supply °C 22 kg/h 0,3 m3/h Condenser Cabin Air Supply °C 1551 kg/h 1980 m3/h N2 79% O2 20% Water System 30°C 165 l/h High Purity ( 2-3x the 66%) (Available: 6840 kg/h) Research - H2 & Fuel Cells System Technology at Airbus - ETB - Ref. X71PR Issue 1


Download ppt "H2 & Fuel Cell System Technology at Airbus"

Similar presentations


Ads by Google