Download presentation

Presentation is loading. Please wait.

Published byKeagan Roads Modified over 2 years ago

1
The BPT diagram and mass-metallicity relation at z~2.3: Insights from KBSS-MOSFIRE Steidel et al. (2014) - Strong nebular line ratios in the spectra of z=2-3 star-forming galaxies: First results from KBSS-MOSFIRE - arXiv:1405.5473 Obtained rest-frame optical spectroscopy of 251 emission-line galaxies between 2.0 < z < 2.6 from Keck. 8.6 < log(M * /M ʘ ) < 11.42 < SFR [M ʘ /yr] < 2007.9 ≤ Z g (O3N2) ≤ 8.6 The star-forming sequence on the BPT diagram at z~2.3 is shifted upwards with respect to that at z=0. This is due to a) higher ionisation parameter, b) harder ionising radiation field (i.e. higher T eff ), and c) higher N/O. The mass-metallicity relation (MZR) at z~2.3 is lower than that at z=0 by ~0.32 dex, at all stellar masses. The dependence of Z g on SFR is much weaker than at z=0, suggesting no FMR extension to these redshifts. Fig. 1 Fig. 2 1

2
The BPT diagram at z~2.3: Fig. 3 High-z galaxies (symbols) lie above the z=0 relation from SDSS (grey points). See also Brinchmann+08, Kewley+13b. The scatter around the best fit (orange line) is similar to that at z=0 (~0.1 dex). This shift away from the local relation implies that locally calibrated strong- line diagnostics will give inconsistent values of Z g at higher redshift. This is because galaxies no longer lie on the expected 1D relations (red curves)… BPT diagram at z=0: Can be used to distinguish star- forming galaxies (along main ridge, e.g. red lines) from AGN hosts (high [OIII]/Hβ and high [NII]/Hα). See e.g. Kewley+01, Kauffmann+03c. Also tells us about metallicity distribution, as Z g for SF galaxies increases to the bottom-right of the plot. 2 Increasing Z g

3
The BPT diagram at z~2.3: …for example, the N2 diagnostic provides a higher Z g than the O3N2 diagnostic at z~2.3, even when calibrated to the same low-z sample of T e galaxies (Pettini & Pagel 04). Therefore, conversions between different diagnostics calibrated at z=0 (e.g. Kewley & Ellison 08) are not applicable at higher z (see also Cullen+14). This is a problem for studies of MZR and FMR evolution (e.g. Maiolino+08; Mannucci+10). Fig. 4 3 Using photoionisation models, Steidel+14 found that both higher ionisation parameter, Γ, and higher T eff are required to reproduce observations at z~2.3 (i.e. match Figs. 3 and 4). n e =1000 cm -3, -2.9 < log(Γ) < -1.8, and T eff ~50000 K are required. However, note the small dependence of BPT position on Z g at fixed Γ in Fig. 5… Are strong- line diagnostics mainly tracing Γ and/or T eff at high-z? Fig. 5 Z/Z ʘ = 0.2 Z/Z ʘ = 1.0

4
O/H dependence on N/O: There is evidence that O/H is nearly independent of N/O at high z, unlike the positive correlation assumed at low z. When assuming no N/O dependence in the photoionisation models, the sensitivity of the N2 diagnostic to Z g is weakened (Fig. 7). The stronger N/O-dependence of the N2 diagnostic causes the over-estimate of Z g at high z relative to the O3N2 diagnostic. Recalibrations of the low-z diagnostics specifically for high z give good correspondence with T e -based metallicities. 4 Fig. 6 Fig. 7

5
The MZR at z~2.3: 5 Assuming that the (locally calibrated) O3N2 diagnostic is better (as it has a weaker N/O dependence and closer correspondence to the few T e metallicities available), the MZR at z~2.3 is plotted (Fig. 8). An offset of around -0.32 dex in Z g from the z=0 MZR is found, similar to the average offset found by Erb+06a using N2. However, no clear mass-dependence in the Zg offset is seen (see also Moustakas+11). This is in contradiction to the ‘chemical downsizing’ claimed by other works using other diagnostics, e.g. locally-calibrated N2 and R23 (e.g. Maiolino+08, Zahid+13b). Compared to Erb+06a metallicities: a) Lower Z g at high M * due to weaker N/O dependence. b) Higher Z g at low M * due to better correspondence with T e metallicities (i.e. higher SNR). Fig. 8

6
The MZR at z~2.3: The scatter in the z~2.3 MZR is remarkably small (σ sc ~0.10 dex), similar to that at z=0. Note that the diagnostic used (even when calibrated to be optimal at high-z) has a larger scatter (σ O3N2 ~0.14 dex). This suggests that there should be an even tighter correlation between M * and line intensity (therefore, Γ) than between M * and Z g … Also, there is no clear dependence of Z g on SFR at fixed mass in the MOSFIRE sample (Fig. 9). This suggests the FMR doesn’t hold at these high redshifts/SFRs… Zahid+14 Moustakas+11 6 Is chemical downsizing really occurring in galaxies?... Fig. 10 Fig. 11 Fu+12 Maiolino+08 See also Aumer+13 Fig. 12 Fig. 9

7
Conclusions: 7 Very young stellar populations, or very top-heavy IMF are not required to reproduce shifted BPT diagram at high redshift. Instead, binarity and fast rotation of low-metallicity, massive stars provide the conditions needed (i.e. high ionisation parameter and high T eff, and increased primary N production). Eight AGN hosts (determined by their far-UV, mid-IR, and X-ray properties) do not lie within the star-forming sequence of the BPT diagram at z~2.3. Therefore, this diagram can still be used to distinguish AGN optically. Strong-line diagnostics are likely tracing ionisation parameter more than Z g at high redshift. However, the O3N2 diagnostic (re-calibrated at z=0) appears to be the most accurate available currently, due to weaker N/O dependence and closer correspondence to T e -method metallicities. Metallicites from strong-line diagnostics differ from each other in different ways at low and high redshift. Therefore, conversions between diagnostics calibrated at z=0 won’t work at high redshift. No mass-dependent MZR evolution from z~2.3 to z=0 found. Previous high-z metallicity estimates using N2 and R23 are likely to be less accurate than the O3N2 diagnostic used here (which, in turn, is worse than an ‘ideal’ high-z-calibrated diagnostic, or T e metallicities). Uncomfortably small scatter in the MZR at all redshifts (compared to the error in the metallicity diagnostics used) suggests that a) a low range of T eff should be present at each epoch, and b) there should be a more fundamental, monotonic relation between M* and Γ. The fundamental metallicity relation (FMR) does not match the distribution of the z~2.3 sample in M * -SFR- Z g space. Nor does this projection onto this space reduce the scatter compared to the MZR (see also Cullen+14). T e -based metallicites, using either weak optical lines or rest-UV intercombination lines (e.g. Erb+10), and high- z calibrations of strong-line ratios from them, are the best ways forward for studying Z g at high redshift.

Similar presentations

OK

IZI: INFERRING METALLICITIES AND IONIZATION PARAMETERS WITH BAYESIAN STATISTICS Guillermo A. Blanc Universidad de Chile.

IZI: INFERRING METALLICITIES AND IONIZATION PARAMETERS WITH BAYESIAN STATISTICS Guillermo A. Blanc Universidad de Chile.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on sbi net banking Ppt on general knowledge quiz Ppt on diode as rectifier Make ppt online Ppt on any topic of maths for class 9th Ppt on bluetooth technology Hrm ppt on recruitment and selection Ppt on non-biodegradable waste picture Ppt on save environment logo Ppt on different types of forests