Download presentation

Presentation is loading. Please wait.

Published byJayson Joel Modified about 1 year ago

1
Rotational Inertia

2
Circular Motion Objects in circular motion have kinetic energy. K = ½ m v 2 The velocity can be converted to angular quantities. K = ½ m (r ) 2 K = ½ (m r 2 ) 2 r m

3
Integrated Mass The kinetic energy is due to the kinetic energy of the individual pieces. The form is similar to linear kinetic energy. K CM = ½ m v 2 K rot = ½ I 2 The term I is the moment of inertia of a particle.

4
Moment of Inertia Defined The moment of inertia measures the resistance to a change in rotation. Mass measures resistance to change in velocityMass measures resistance to change in velocity Moment of inertia I = mr 2 for a single massMoment of inertia I = mr 2 for a single mass The total moment of inertia is due to the sum of masses at a distance from the axis of rotation.

5
Two Spheres A spun baton has a moment of inertia due to each separate mass. I = mr 2 + mr 2 = 2mr 2 If it spins around one end, only the far mass counts. I = m(2r) 2 = 4mr 2 m r m

6
Mass at a Radius Extended objects can be treated as a sum of small masses. A straight rod ( M ) is a set of identical masses m. The total moment of inertia is Each mass element contributes The sum becomes an integral axis length L distance r to r+ r

7
Rigid Body Rotation The moments of inertia for many shapes can found by integration. Ring or hollow cylinder: I = MR 2Ring or hollow cylinder: I = MR 2 Solid cylinder: I = (1/2) MR 2Solid cylinder: I = (1/2) MR 2 Hollow sphere: I = (2/3) MR 2Hollow sphere: I = (2/3) MR 2 Solid sphere: I = (2/5) MR 2Solid sphere: I = (2/5) MR 2

8
Point and Ring The point mass, ring and hollow cylinder all have the same moment of inertia. I = MR 2I = MR 2 All the mass is equally far away from the axis. The rod and rectangular plate also have the same moment of inertia. I = (1/3) MR 2 The distribution of mass from the axis is the same. R M M R axis length R M M

9
Parallel Axis Theorem Some objects don’t rotate about the axis at the center of mass. The moment of inertia depends on the distance between axes. The moment of inertia for a rod about its center of mass: axis M h = R/2

10
Spinning Energy How much energy is stored in the spinning earth? The earth spins about its axis. The moment of inertia for a sphere: I = 2/5 M R 2 The kinetic energy for the earth: K rot = 1/5 M R 2 2 With values: K = 2.56 x J The energy is equivalent to about 10,000 times the solar energy received in one year. next

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google