Download presentation

Presentation is loading. Please wait.

Published byJaquelin Flynn Modified over 2 years ago

1
Circles – Circumference and Area Circumference – the distance around a circle

2
Circles – Circumference and Area Circumference – the distance around a circle It turns out, if you divide any circle by its diameter you get pi. Pi is a non- repeating, non-terminating decimal. We’ll always use 3.14 as an approximate value when calculating using Pi.

3
Circles – Circumference and Area Circumference – the distance around a circle It turns out, if you divide any circle by its diameter you get pi. Pi is a non- repeating, non-terminating decimal. We’ll always use 3.14 as an approximate value when calculating using Pi. Example # 1 : The radius of a circle = 4 inches. Find diameter = ? circumference = ?

4
Circles – Circumference and Area Circumference – the distance around a circle It turns out, if you divide any circle by its diameter you get pi. Pi is a non- repeating, non-terminating decimal. We’ll always use 3.14 as an approximate value when calculating using Pi. Example # 1 : The radius of a circle = 4 inches. Find diameter = 8 inches circumference = ?

5
Circles – Circumference and Area Circumference – the distance around a circle It turns out, if you divide any circle by its diameter you get pi. Pi is a non- repeating, non-terminating decimal. We’ll always use 3.14 as an approximate value when calculating using Pi. Example # 1 : The radius of a circle = 4 inches. Find diameter = 8 inches circumference = 25.12 inches

6
Circles – Circumference and Area Circumference – the distance around a circle It turns out, if you divide any circle by its diameter you get pi. Pi is a non- repeating, non-terminating decimal. We’ll always use 3.14 as an approximate value when calculating using Pi. Example # 2 : The circumference of a circle = 47.1 feet. Find diameter = ? radius = ?

7
Circles – Circumference and Area Circumference – the distance around a circle It turns out, if you divide any circle by its diameter you get pi. Pi is a non- repeating, non-terminating decimal. We’ll always use 3.14 as an approximate value when calculating using Pi. Example # 2 : The circumference of a circle = 47.1 feet. Find diameter = 15 feet radius = ?

8
Circles – Circumference and Area Circumference – the distance around a circle It turns out, if you divide any circle by its diameter you get pi. Pi is a non- repeating, non-terminating decimal. We’ll always use 3.14 as an approximate value when calculating using Pi. Example # 2 : The circumference of a circle = 47.1 feet. Find diameter = 15 feet radius = 7.5 feet

9
Circles – Circumference and Area Area of a Circle – the amount of square units inside the circle

10
Circles – Circumference and Area Area of a Circle – the amount of square units inside the circle Example 1:The radius of a circle is 3 inches. What is the area? Solution: = 3.14 · (3 in) · (3 in) = 3.14 · (9 in 2 ) = 28.26 in 2

11
Circles – Circumference and Area Area of a Circle – the amount of square units inside the circle Example 2 : The area of a circle is 78.5 square meters. What is its radius ? Solution :

12
Circles – Circumference and Area Knowing the circumference of a circle can help us find lengths of arcs in circles and central angle measurements. The total number of degrees in a circle = 360 degrees. We can use proportions to solve these problems.

13
Circles – Circumference and Area Knowing the circumference of a circle can help us find lengths of arcs in circles and central angle measurements. The total number of degrees in a circle = 360 degrees. We can use proportions to solve these problems. Example : Find arc AC if radius = 4 cm and measure of angle AOC = 30 degrees. C A O 2 30°

14
Circles – Circumference and Area Knowing the circumference of a circle can help us find lengths of arcs in circles and central angle measurements. The total number of degrees in a circle = 360 degrees. We can use proportions to solve these problems. Example : Find arc AC if radius = 4 cm and measure of angle AOC = 30 degrees. C A O 2 30° Solution :

15
Circles – Circumference and Area Knowing the circumference of a circle can help us find lengths of arcs in circles and central angle measurements. The total number of degrees in a circle = 360 degrees. We can use proportions to solve these problems. Example : Find arc AC if radius = 4 cm and measure of angle AOC = 30 degrees. C A O 4 30° Solution :

16
Circles – Circumference and Area Knowing the circumference of a circle can help us find lengths of arcs in circles and central angle measurements. The total number of degrees in a circle = 360 degrees. We can use proportions to solve these problems. Example : Find circumference if arc AC = 24 inches and measure of angle AOC = 60 degrees.. C A O 24 60°

17
Circles – Circumference and Area Knowing the circumference of a circle can help us find lengths of arcs in circles and central angle measurements. The total number of degrees in a circle = 360 degrees. We can use proportions to solve these problems. Example : Find circumference if arc AC = 24 inches and measure of angle AOC = 60 degrees.. C A O 24 60° Solution :

Similar presentations

OK

Warm up: Solve for x 18 ◦ 1.) x 124 ◦ 70 ◦ x 2.) 3.) x 260 ◦ 20 ◦ 110 ◦ x 4.)

Warm up: Solve for x 18 ◦ 1.) x 124 ◦ 70 ◦ x 2.) 3.) x 260 ◦ 20 ◦ 110 ◦ x 4.)

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on indian english literature Ppt on machine translation of japanese View ppt on ipad Ppt on current indian economy 2012 Ppt on electron spin resonance spectroscopy of organic radicals Ppt on 5v power supply Ppt on noun for class 2 Ppt on care of public property tax Ppt on duty roster design Ppt on misinterpretation of data