Presentation is loading. Please wait.

Presentation is loading. Please wait.

Binary Search Tree Smt Genap 2011-2012.

Similar presentations


Presentation on theme: "Binary Search Tree Smt Genap 2011-2012."— Presentation transcript:

1 Binary Search Tree Smt Genap

2 Outline Concept of Binary Search Tree (BST) BST operations
Find Insert Remove Running time analysis of BST operations Smt Genap

3 Binary Search Tree: Properties
Elements have keys (no duplicates allowed). For every node X in the tree, the values of all the keys in the left subtree are smaller than the key in X and the values of all the keys in the right subtree are larger than the key in X. The keys must be comparable. X <X >X Smt Genap

4 Binary Search Tree: Examples
7 9 2 1 5 6 3 Smt Genap

5 Binary Search Tree: Examples
3 3 1 1 2 2 1 3 3 2 1 2 2 1 3 Smt Genap

6 Basic Operations FindMin, FindMax, Find Insert Remove
Smt Genap

7 FindMin Find node with the smallest value Algorithm: Code:
Keep going left until you reach a dead end! Code: BinaryNode<Type> findMin(BinaryNode<Type> t) { if (t != null) while (t.left != null) t = t.left; return t; } Smt Genap

8 FindMax Find node with the largest value Algorithm: Code:
Keep going right until you reach a dead end! Code: BinaryNode<Type> findMax(BinaryNode<Type> t) { if (t != null) while (t.right != null) t = t.right; return t; } Smt Genap

9 Find You are given an element to find in a BST. If it exists, return the node. If not, return null. Algorithm? Code? 7 9 2 1 5 6 3 Smt Genap

10 Find: Implementation BinaryNode<Type> find(Type x, BinaryNode<T> t) { while(t!=null) if(x.compareTo(t.element)<0) t = t.left; else if(x.compareTo(t.element)>0) t = t.right; else return t; // Match } return null; // Not found Smt Genap

11 Insertion: Principle When inserting a new element into a binary search tree, it will always become a leaf node. 10 2 3 15 1 5 6 12 14 Smt Genap

12 Insertion: Algorithm To insert X into a binary search tree:
Start from the root If the value of X < the value of the root: X should be inserted in the left sub-tree. If the value of X > the value of the root: X should be inserted in the right sub-tree. Remember that a sub-tree is also a tree. We can implement this recursively! Smt Genap

13 Insertion: Implementation
BinaryNode<Type> insert(Type x, BinaryNode<Type> t) { if (t == null) t = new BinaryNode<Type>(x); else if(x.compareTo(t.element)<0) t.left = insert (x, t.left); else if(x.compareTo(t.element)>0) t.right = insert (x, t.right); else throw new DuplicateItemException(x); return t; } Smt Genap

14 Removing An Element 8 4 5 12 1 6 3 4 6 5 Smt Genap

15 Removing An Element: Algorithm
If the node is a leaf, simply delete it. If the node has one child, adjust parent’s child reference to bypass the node. If the node has two children: Replace the node’s element with the smallest element in the right subtree and then remove that node, or Replace the node’s element with the largest element in the left subtree and then remove that node Introduces new sub-problems: removeMin: Alternatively, removeMax Smt Genap

16 Removing Leaf 8 12 4 6 1 3 5 Smt Genap

17 Removing Node With 1 Child
8 12 4 6 1 3 5 Smt Genap

18 Removing Node With 1 Child
8 12 4 6 1 3 5 Smt Genap

19 removeMin BinaryNode<Type> removeMin(BinaryNode<Type> t) { if (t == null) throw new ItemNotFoundException(); else if (t.left != null) t.left = removeMin(t.left); return t; } else return t.right; Smt Genap

20 Removing Node With 2 Children
7 9 2 1 5 3 4 Smt Genap

21 Removing Node With 2 Children
7 2 9 3 3 1 5 3 4 Smt Genap

22 Removing Node With 2 Children
7 2 9 3 2 1 5 3 4 Smt Genap

23 Removing Root 7 2 3 12 1 5 4 10 14 9 11 9 Smt Genap

24 Remove BinaryNode<Type> remove(Type x, BinaryNode<Type> t) { if (t == null) throw new ItemNotFoundException(); if (x.compareTo(t.element)<0) t.left = remove(x, t.left); else if(x.compareTo(t.element)>0) t.right = remove(x, t.right); else if (t.left!=null && t.right != null) t.element = findMin(t.right).element; t.right = removeMin(t.right); } else if(t.left!=null) t=t.left; else t=t.right; return t; Smt Genap

25 Find k-th element X X X SL SR SL SR SL SR k < SL + 1 k == SL + 1
Smt Genap

26 Find k-th element BinaryNode<Type> findKth(int k, BinaryNode<Type> t) { if (t == null) throw exception; int leftSize = (t.left != null) ? t.left.size : 0; if (k <= leftSize ) return findKth (k, t.left); else if (k == leftSize + 1) return t; else return findKth ( k - leftSize - 1, t.right); } Smt Genap

27 Analysis Running time for: Average case: O(log n) Worst case: O(n)
Insert? Find min? Remove? Find? Average case: O(log n) Worst case: O(n) Smt Genap

28 Summary Binary Search Tree maintains the order of the tree.
Each node should be comparable All operations take O(log n) - average case, when the tree is equally balanced. All operations will take O(n) - worst case, when the height of the tree equals the number of nodes. Smt Genap


Download ppt "Binary Search Tree Smt Genap 2011-2012."

Similar presentations


Ads by Google