Download presentation

Presentation is loading. Please wait.

Published byDavis Duddleston Modified over 2 years ago

1
**Derivation of the Vector Dot Product and the Vector Cross Product**

2
**Derivation of the Vector Dot Product**

u·v =∑i ui vi = ∑i ui ei ∑i vj ej

3
**(u1 e1 + u2 e2 + u3 e3) (v1 e1 + v2 e2 + v3 e3)**

Kronecker Delta ei·ej = δij = when i = j 0 when i ≠ j

4
= u1 e1 v1 e1 + u1 e1 v2 e2 + u1 e1 v3e3 + u2 e2 v1 e1 + u2 e2 v2 e2 + u2 e2 v3 e3 + u3 e3 v1 e1 + u3 e3 v2 e2 + u3 e3 v3 e3

5
= u1v1e1e1+ u2v2e2e2+u3v3e3e3 = u1v1+ u2v2+u3v3

6
**Vector Cross Product Einstein Notation**

u × υ = εijk e i uj υk = Σijkεijkeiujυk = Σi Σj Σk εijkeiujυk

7
**Levi-Civati Symbol ε = 0 unless i, j, k are distinct**

+1 if i, j, k is an even permutation of (1, 2, 3) -1 if i. j, k is an odd permutation of (1, 2, 3) ε =

8
**Derivation of the Cross Product**

= (ε121 u2v1 + ε122 u2v2 + ε123 u2v3 + ε131 u3v1 + ε132 u3v2 + ε133 u3v3 ) e1+ (ε211 u1v1 + ε212 u1v2 + ε213 u1v3 + ε231 u3v1 + ε232 u3v2 + ε233 u3v3 )e2 + (ε311 u1v1 + ε312 u1v2 + ε313 u1v3 + ε321 u2v1 + ε322 u2v2 + ε323 u2v3 ) e3

9
Levi-Civati Symbol even 123, 231, odd 321, 213, 132

10
**Derivation of the Cross Product**

= (ε123 u2v3+ ε132u3v2) e1 + (ε213 u1v3 + ε231 u3v1) e2+ (ε312 u1v2 + ε321 u2v1) e3 = (u2v3 – u3v2)e1 + (u1v3 – u3v1)e2 + (u1v2 – u2v1)e3

Similar presentations

OK

Vectors. Vector Space A vector space is an abstract mathematical object. It has a set of vectors. Commutative with additionCommutative with addition.

Vectors. Vector Space A vector space is an abstract mathematical object. It has a set of vectors. Commutative with additionCommutative with addition.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on review of related literature powerpoint Ppt on mars one astronaut Best ppt on motivation Ppt on lathe machine operations Quantum dot display ppt online Ppt on rag pickers Ppt on operating system deadlock Ppt on adjectives for grade 3 Ppt on 21st century skills assessment Ppt on therapeutic environment in nursing