Download presentation

Presentation is loading. Please wait.

Published byCheyanne Seawright Modified over 3 years ago

1
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.1 Transient Behaviour Introduction Charging Capacitors and Energising Inductors Discharging Capacitors and De-energising Inductors Response of First-Order Systems Second-Order Systems Higher-Order Systems Chapter 18

2
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.2 Introduction So far we have looked at the behaviour of systems in response to: –fixed DC signals –constant AC signals We now turn our attention to the operation of circuits before they reach steady-state conditions –this is referred to as the transient response We will begin by looking at simple RC and RL circuits 18.1

3
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.3 Charging Capacitors and Energising Inductors Capacitor Charging Consider the circuit shown here –Applying Kirchhoff’s voltage law –Now, in a capacitor –which substituting gives 18.2

4
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.4 The above is a first-order differential equation with constant coefficients Assuming V C = 0 at t = 0, this can be solved to give –see Section 18.2.1 of the course text for this analysis Since i = Cdv/dt this gives (assuming V C = 0 at t = 0) –where I = V/R

5
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.5 Thus both the voltage and current have an exponential form

6
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.6 Inductor energising A similar analysis of this circuit gives where I = V/R – see Section 18.2.2 for this analysis

7
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.7 Thus, again, both the voltage and current have an exponential form

8
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.8 Discharging Capacitors and De-energising Inductors Capacitor discharging Consider this circuit for discharging a capacitor –At t = 0, V C = V –From Kirchhoff’s voltage law –giving 18.3

9
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.9 Solving this as before gives –where I = V/R – see Section 18.3.1 for this analysis

10
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.10 In this case, both the voltage and the current take the form of decaying exponentials

11
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.11 Inductor de-energising A similar analysis of this circuit gives –where I = V/R – see Section 18.3.1 for this analysis

12
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.12 And once again, both the voltage and the current take the form of decaying exponentials

13
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.13 A comparison of the four circuits

14
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.14 Response of First-Order Systems Initial and final value formulae –increasing or decreasing exponential waveforms (for either voltage or current) are given by: –where V i and I i are the initial values of the voltage and current –where V f and I f are the final values of the voltage and current –the first term in each case is the steady-state response –the second term represents the transient response –the combination gives the total response of the arrangement 18.4

15
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.15 Example – see Example 18.3 from course text The input voltage to the following CR network undergoes a step change from 5 V to 10 V at time t = 0. Derive an expression for the resulting output voltage.

16
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.16 Here the initial value is 5 V and the final value is 10 V. The time constant of the circuit equals CR = 10 10 3 20 10 -6 = 0.2s. Therefore, from above, for t 0

17
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.17 The nature of exponential curves

18
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.18 Response of first-order systems to a square waveform –see Section 18.4.3

19
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.19 Response of first-order systems to a square waveform of different frequencies –see Section 18.4.3

20
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.20 Second-Order Systems Circuits containing both capacitance and inductance are normally described by second-order differential equations. These are termed second-order systems –for example, this circuit is described by the equation 18.5

21
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.21 When a step input is applied to a second-order system, the form of the resultant transient depends on the relative magnitudes of the coefficients of its differential equation. The general form of the response is –where n is the undamped natural frequency in rad/s and (Greek Zeta) is the damping factor

22
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.22 Response of second-order systems =0 undamped <1 under damped =1 critically damped >1 over damped

23
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.23 Higher-Order Systems Higher-order systems are those that are described by third-order or higher-order equations These often have a transient response similar to that of the second-order systems described earlier Because of the complexity of the mathematics involved, they will not be discussed further here 18.6

24
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.24 Key Points The charging or discharging of a capacitor, and the energising and de-energising of an inductor, are each associated with exponential voltage and current waveforms Circuits that contain resistance, and either capacitance or inductance, are termed first-order systems The increasing or decreasing exponential waveforms of first-order systems can be described by the initial and final value formulae Circuits that contain both capacitance and inductance are usually second-order systems. These are characterised by their undamped natural frequency and their damping factor

Similar presentations

Presentation is loading. Please wait....

OK

ECE 3336 Introduction to Circuits & Electronics

ECE 3336 Introduction to Circuits & Electronics

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Marketing mix ppt on sony tv Ppt on environmental sustainability Ppt on networking related topics about economics Download ppt on emerging modes of business Ppt on indian herbs and spices Ppt on job satisfaction Ppt on solid dielectrics in series Ppt on wireless network architecture Ppt on conservation of forest resources Ppt on types of motion for class 6