Download presentation

Presentation is loading. Please wait.

Published byMarilyn Rawling Modified over 2 years ago

1
Aggregation of Partial Rankings p-Ratings and Top-m Lists Nir Ailon Institute for Advanced Study

2
Rankings linear order on element set V (candidates) e.g. over V={v 1,v 2,v 3 }: =v 2,v 3,v 1 voting: expressing preferences IR: sorting search results by relevance learning: concept class for recommendation systems

3
Rank Aggregation “fuse” list of rankings (votes) into one 1 2.. k

4
Partial Ranking linear order on equivalence classes of elt’s e.g. =[v 1 v 4 ], [v 2 v 7 v 5 ], [v 3 v 6 ] equivalent elements: ties v 1 < v 7, v 3 v 6 v 1 < v 7, v 3 v 6

5
ranking of 2000 elements V={v 1,…, v 2000 } top-m lists (m=3) v 300, v 250, v 1845, […] V 250 < V 1845 v 300 < v 5 v 5 v 6

6
ranking of 10 elements V={v 1,…, v 10 } p-ratings (p=3) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 10 < v 1 v 5 v 4 ii

7
Partial Rank Aggregation “fuse” a list of partial rankings into one partial) 1 partial) 2.. partial) k (full)

8
Objective Function [FKMSV’04]: metrics on partial rankings [FKMSV’04]: metrics on partial rankings equivalence (up to const) of all metrics equivalence (up to const) of all metrics 3 approx for metric “F prof ” 3 approx for metric “F prof ” [ACN’05]: Approx algorithms for rank agg’ [ACN’05]: Approx algorithms for rank agg’

9
Objective Function (Generalized Kemeny) d( i, ) = #{u,v | u< v, v< u} (not a metric on partial rankings) min d( i, )

10
Geometric Interpretation of d i ’ (full) i P i ( i ’) (partial) d( i, ) P i -1 ( i )

11
Results Overview 2-rating in P but top-2 NP-Hard 2-rating in P but top-2 NP-Hard 2-approximation: RepeatChoice 2-approximation: RepeatChoice Generalizes pick-a-perm [ACN05, DKNS01] Generalizes pick-a-perm [ACN05, DKNS01] 3/2-approximation: LPKwikSort h 3/2-approximation: LPKwikSort h Generalizes LPKwikSort [ACN05] Generalizes LPKwikSort [ACN05] Solve LP Solve LP “Tweak” optimal solution using function h “Tweak” optimal solution using function h

12
Complexity 2-rating aggregation in P 2-rating aggregation in P Input: 8 i i = [V i1 ], [V i2 ] V i1 [ V i2 =V Input: 8 i i = [V i1 ], [V i2 ] V i1 [ V i2 =V 8 v 2 V n v = #{i: v 2 V i1 } 8 v 2 V n v = #{i: v 2 V i1 } sort V by decreasing n v sort V by decreasing n v top-2 aggregation NP-Hard top-2 aggregation NP-Hard Input: 8 i i = u i, v i, [V\{u_i, v_i}] Input: 8 i i = u i, v i, [V\{u_i, v_i}] Proof: Reduction from Min FAS in tournaments [ACN05, Alon06] Proof: Reduction from Min FAS in tournaments [ACN05, Alon06]

13
v 1 v 2 v 3 v 4 22 v 1 v 2 v 3 v 4 v 1 v 2 v 3 v 4 11 33 [v 2 v 3 ], [v 1 v 4 ] v 2, v 3, [v 1 v 4 ] v 2, v 3, v 4, v 1 ranking of 4 candidates V={v 1, v 2, v 3, v 4 } RepeatChoice: 2 approximation

14
Rounding LP w(u,v) = #{i: u < i v}/k w(u,v) = #{i: u < i v}/k Satisfies : w(u,v) · w(u,w) + w(w,v) Satisfies : w(u,v) · w(u,w) + w(w,v) Minimum FAS IP Minimum FAS IP minimize x(u,v) w(v,u) : x(u,v) · x(u,w) + x(w,v) T: x(u,v) + x(v,u) = 1 I: x(u,v) 2 {0,1} minimize x(u,v) w(v,u) : x(u,v) · x(u,w) + x(w,v) T: x(u,v) + x(v,u) = 1 I: x(u,v) 2 {0,1} [0,1] LP

15
u v with probability h(x(u,v)) with probability h(x(v,u)) 0 1 1 0 h LPKwikSort h : 3/2 approximation

16
Other Metrics d( i, ) does not penalize u,v if u v d( i, ) does not penalize u,v if u i v d’( i, ) = #{u,v| u v} d’( i, ) = #{u,v| u i v} d+d’/2 metric [FKMSV 05] d+d’/2 metric [FKMSV 05] d’ depends on input, not output d’ depends on input, not output ) 2 and 3/2 approx algorithms for d+d’/2 ) 2 and 3/2 approx algorithms for d+d’/2 Constant approx for all metrics in FKMSV 04 Constant approx for all metrics in FKMSV 04

17
open questions PTAS PTAS Is Top-m agg’ NP-Hard for k=o(n) voters? Is Top-m agg’ NP-Hard for k=o(n) voters? Best of LP-KwikSort, RepeatChoice: 4/3 approx? [ACN 05] Best of LP-KwikSort, RepeatChoice: 4/3 approx? [ACN 05]

Similar presentations

OK

1 Traveling Salesman Problem (TSP) Given n £ n positive distance matrix (d ij ) find permutation on {0,1,2,..,n-1} minimizing i=0 n-1 d (i), (i+1.

1 Traveling Salesman Problem (TSP) Given n £ n positive distance matrix (d ij ) find permutation on {0,1,2,..,n-1} minimizing i=0 n-1 d (i), (i+1.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on leaders of the revolt of 1857 The heart anatomy and physiology ppt on cells Ppt on ram and rom computer Ppt on db2 mainframes computer Ppt on astronomy and astrophysics courses Ppt on diode as rectifier circuits Ppt on japanese business culture Ppt on abo blood grouping chart Ppt on carburetor for sale Download ppt on fundamental rights and duties pictures