Presentation is loading. Please wait.

Presentation is loading. Please wait.

Functions of Random Variables Notes of STAT 6205 by Dr. Fan.

Similar presentations


Presentation on theme: "Functions of Random Variables Notes of STAT 6205 by Dr. Fan."— Presentation transcript:

1 Functions of Random Variables Notes of STAT 6205 by Dr. Fan

2 Overview Chapter 5 Functions of One random variable o General: distribution function approach o Change-of-variable approach Functions of Two random variables o Change-of-variable approach Functions of Independent random variables Order statistics The Moment Generating Function approach Random functions associated with normal distributions o Student’s t-distribution The Central Limit Theorem o Normal approximation of binomial distribution (Section 10.5) Chebyshev’s Inequality and convergence in probability 6205-Ch52

3 General Method: Distribution Function Approach Goal: to find the distribution of Y=h(X) When: the pdf of X, f(x) is known Then the cdf of Y, G(y) is: And the pdf of Y, g(y)=G’(y) 6205-Ch53

4 Examples/Exercises Let X~U(0,10) and Y=X^3. Find the cdf and pdf of Y Let X~Exp(mu=2) and Y=Exp(X). Find the cdf and pdf of Y Let X~Gamma(a,b) and X=log(Y). Find the pdf of Y (Loggamma distribution) 6205-Ch54

5 Change of Variable Approach When: the pdf of X is known and Y=h(X), a monotonic function (i.e. its inverse function exists; X = V(Y) ) 6205-Ch55

6 Examples/Exercises Let Y=(1-X)^3 and find its pdf g(y) Problem 1: f(x)=x/2, 0 { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://slideplayer.com/3169593/11/images/slide_5.jpg", "name": "Examples/Exercises Let Y=(1-X)^3 and find its pdf g(y) Problem 1: f(x)=x/2, 0

7 Transformations of Two Random Variables Let f(x1,x2) be the joint pdf of X1,X2 Let Y1=u1(X1,X2) and Y2=u2(X1,X2) where u1, u2 have inverse functions, that is, X1=v1(Y1,Y2) and X2=v2(Y1,Y2) Goal: find the joint pdf of Y1,Y2, g(y1,y2) 6205-Ch57

8 Examples/Exercises 1.f(x1,x2)=2 where 0 { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://slideplayer.com/3169593/11/images/slide_7.jpg", "name": "Examples/Exercises 1.f(x1,x2)=2 where 0

9 Independent Random Variables Let X1, X2, …,Xn be independent random variables Joint pmf (or pdf) of X1, X2, …, Xn: f(x1,x2,…,xn)=f1(x1)f2(x2)…fn(xn) Random sample from a distribution f(x): X1, X2, … Xn are independent and identically distributed; f(x1,x2,…,xn)=f(x1)f(x2)…f(xn) 6205-Ch59

10 Examples/Exercises Let X1, X2, …, Xn be a random sample from Exp(0.5). Find the joint p.d.f of this sample. Exercise: What is the probability of seeing at least one Xi less than one? Exactly one less than one? 6205-Ch510

11 Functions of Independent R. V.s Theorem Let X1, X2, …, Xn be independent r. v.s. Then: Theorem (page 238) 6205-Ch511

12 Examples/Exercises Given a random sample of size n from a distribution with mean mu and SD sigma, find the mean and variance of the sample mean 6205-Ch512

13 Moment Generating Function 6205-Ch513

14 Examples/Exercises Example: Prove that the sum of i.i.d. Ber(p) r.v.s is a Bin(n, p) r. v. Exercise: Prove that the sum of i.i.d. Exp(mu) r. v.s is a Gamma(a=n, b=0.5) r. v. 1)What is the m.g.f. of Exp(mu)? 2)What is the m.g.f. of Gamma(a,b)? 3)Prove this problem using m.g.f Ch514

15 Random Variables Assoc. With Normal Distributions Theorem 1: The distribution of the sum of i.i.d. normal r. v.s is also normal Theorem 2: The distribution of the sum of normal r. v.s is also normal Theorem 3: The distribution of the average of normal r. v.s is also normal 6205-Ch515

16 Student’s t-distribution 6205-Ch516

17 Proof: 1)Show S^2 and X-bar are independent 2)Use m.g.f to prove the distribution is chi-square Example: Show that the one-sample t test statistic is t- distributed with (n-1) degree of freedom 6205-Ch517

18 Features of t distribution t(r) Shape: Bell-shaped Center and Spread: mean=0 if r > 1 variance =r/(r-2) if r > 2(undefined otherwise) M.G.F. does not exist Asymptotic distribution: (show simulation results) As d.f. r goes to infinity, t(r) approaches to N(0,1) 6205-Ch518

19 Central Limit Theorem 6205-Ch519

20 Examples/Exercises Illustration: Bin(n, p) goes to Normal as n goes to infinity [Aplia: STAT 1000 homework 4 Q3] Problem: Let X-bar be the mean of a random sample of n=25 currents in a strip of wire in which each measurement has a mean of 15 and a variance of 4. Estimate the probability of X-bar falling between 14.4 and Problem: Suppose BART wants to perform some quality control. They know the waiting time for one at a BART station is U(10,30). In a random sample of 30 people, what tis the (approximate) probability that the average waiting time is more than 22 minutes? Recall the mean and variance for U(10,30) is 20 and respectively Ch520

21 Chebyshev’s Inequality If the r. v. X has a mean m and variance s ^2, then for every k > 1, Q: how to use this inequality to set up a lower bound of P(|X - m |< ks )? Example: Use this inequality to find a lower bound of the probability that X is no more than 2 S.D. from the mean. Is the lower bound close to the exact probability if X ~ N( m, s ^2 ) 6205-Ch521

22 Example: Tossing a Coin If we want to estimate p, the chance of heads for a given coin, how many times share we toss it in order to get a sufficient accurate estimate? Let Y be the # of heads on n flips; sample estimate of p, p-hat = Y/n. Use the Chebyshev’s Inequality to find the required sample size n Ch522

23 (Weak) Law of Large Number Let X1, X2, …, Xn be i.i.d. r. v.s with finite mean m and finite S.D. s. Then X-bar converges to m in probability. Proof. By Chebychev’s Inequality Ch523


Download ppt "Functions of Random Variables Notes of STAT 6205 by Dr. Fan."

Similar presentations


Ads by Google