Download presentation

Presentation is loading. Please wait.

Published byStephany Denby Modified about 1 year ago

1
Radicals

2
I am not a teacher; only a fellow traveler of whom you asked the way. George Bernard Shaw (1856-1950) British dramatist, critic, writer.

3
4 2 means 4 x 4 = 16. It is called 4 squared and 16 is called a square number. Squaring a Number A square with sides that are 4 long has an area of 16 units 2 4 2 = 16 You can see the reason for calling it 4 squared and why 16 is a square number

4
The numbers 16, 36, and 49 are examples of perfect squares. A perfect square is a number that has integers as its base. Other perfect squares include 1, 4, 9, 25, 64, and 81. Perfect Squares Number 1 2 3 4 5 Square 1 4 9 16 25 Number 6 7 8 9 10 Square 36 49 64 81 100

5
Square Roots Many mathematical operations have an inverse, or opposite, operation. Subtraction is the opposite of addition, division is the inverse of multiplication, and so on. Squaring has an inverse too, called "finding the square root."

6
Square Roots Remember, the square of a number is that number times itself. The square root of a number, n, written is the number that gives n when multiplied by itself. For example, because 10 x 10 = 100

7
Square Roots √16 means ‘the square root of 16’ and √16 = 4 A square with an area of 16 has sides that are 4 units long. Taking the square root of a number is the reverse process of squaring the number.

8
Perfect square Square root 1 1 = 1 4 4 = 2 9 9 = 3 16 16 = 4 25 25 = 5 36 36 = 6 49 49 = 7 64 64 = 8 81 81 = 9 100 100 = 10 121 121 = 11 144 144 = 12 169 169 = 13 196 196 = 14 225 225 = 15 Perfect square Square root

9
Square Roots Every positive number has two square roots, one positive and one negative. One square root of 16 is 4, since 4 × 4 = 16. The other square root of 16 is –4, since (–4) × (–4) is also 16. You can write the square roots of 16 as ±4, meaning “plus or minus” 4.

10
Square Roots The radical symbol returns only the positive root. This is called the principal square root of the number. To get the negative root, simply take the opposite of the principal root:

11
What about negatives? Consider a negative under the radical positive This is asking ‘what number multiplied by itself returns a -25?’ 5×5 = 25 (-5) ×(-5) = 25 No product returns a negative value

12
Find the square root of 16 to find the width of the table. Use the positive square root; a negative length has no meaning. Example A square shaped kitchen table has an area of 16 square feet. Will it fit through a van door that has a 5 foot wide opening? So the table is 4 feet wide, which is less than 5 feet, so it will fit through the van door.

13
1.Estimate - first, get as close as you can by finding two perfect square roots your number is between. 2.Divide - divide your number by one of those square roots. 3.Average - take the average of the result of step 2 and the root. 4.Use the result of step 3 to repeat steps 2 and 3 until you have a number that is accurate enough for you. Estimating Square Roots Finding square roots of numbers that aren't perfect squares without a calculator

14
1.Estimate - first, get as close as you can by finding two perfect square roots your number is between. Estimating Square Roots Calculate the square root of 10 without a calculator 34? Lies between 3 and 4

15
2.Divide - divide your number by one of those square roots. Estimating Square Roots Calculate the square root of 10 Divide 10 by 3. (you can round off your answer) 10 3 = 3.33

16
3.Average - take the average of the result of step 2 and the root chosen in step 2. Estimating Square Roots Calculate the square root of 10 Average 3.33 and 3. 3.33 + 3 2 = 3.1667

17
4.Use the result of step 3 to repeat steps 2 and 3 until you have a number that is accurate enough for you. Estimating Square Roots Calculate the square root of 10 Repeat step 2 with 10 and 3.1667 10 3.1667 = 3.1579 Repeat step 3 with 3.1667 and 3.1579 3.1667 + 3.1579 2 = 3.1623

18
If this is accurate enough for you, you can stop! Otherwise, you can repeat steps 2 and 3. Estimating Square Roots Calculate the square root of 10 Try the answer → Is 3.1623 squared equal to 10? 3.1623 x 3.1623 = 10.0001

19
Multiplying Radicals Consider the following product = 2 × 3 = 6 Another way: = 6

20
Rules of Radicals This process leads to a few simple rules we can use with radicals

21
Multiply

22
Simplifying Radicals There are three components to a simplified radical: 1.All perfect square factors should be removed from the radical 2.All fractions should be removed from the radical 3.All radicals should be removed from the denominator

23
Simplify Radicals Recall we prefer to simplify fractions by removing common factors to make the denominator smaller. For radicals, we will follow a similar process, except we will concentrate on perfect square factors Perfect Square

24
Simplify Think of the largest perfect square that divides into 32 4 yes → 4×8 9 no 16 yes → 16×2

25
Simplify Think of the largest perfect square that divides into 32 4 no 9 yes → 9×5

26
Simplify Even if you can’t think of the largest perfect square, you can always simplify down through each perfect square:

27
Simplify Use the division property Check: 2/3 2/3 = 4/9

28
Simplify Use the division property to write as single fraction Use the division property again Simplify the fraction

29
Simplify Recall: All radicals should be removed from the denominator How do we remove the radical from the denominator?

30
Since this is a fraction, then let’s think about how we change the denominator of a fraction? (Without changing the value of the fraction, of course.)

31
We multiply the denominator and the numerator by the same number How can we change the radical value to a rational value?

32
Simply multiply the radical by itself! Remember when we square a square root, the radical goes away

33
In our fraction, to get the radical out of the denominator, we can multiply numerator and denominator by

34
Because we are changing the denominator to a rational number, we call this process rationalizing.

35
Simplify Use the division property Rationalize the denominator

36
Exponents under the Radical Variables with exponents may exist under the radical, but the same simplifying process still applies All even exponents are perfect squares Notice the pattern half the exponent

37
Exponents under the Radical To simplify, we can use the perfect square property Rewrite as a perfect square The radical and the square offset each other No more radical half of 10 is 5

38
Simplify Half of the exponent 6 is half of 12 4 is half of 8

39
Exponents under the Radical Odd exponents can be rewritten as an even and an odd by using the rules of exponents 3 = 2 + 1 9 = 8 + 1 15 = 14 + 1 101 = 100 + 1 Rewrite odd exponent as one less (even) plus one

40
Simplify Rewrite odd exponent as one less (even) and one half of 6 is 3 the other x stays under the radical

41
Adding Radicals Adding radicals is same as adding like terms: 1 + 1 = 2 x + x = 2x + = 2

42
Adding and Subtracting Like Radicals Add or subtract, as indicated. Assume all variables represent positive real numbers. Cannot add yet. Simplify to see if they are like radicals

43
Combined Operations with Radicals You follow the same steps with these as you do with polynomials. Use the distribution property. Example:

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google