Download presentation

Presentation is loading. Please wait.

Published byCraig Letts Modified about 1 year ago

1
Delta-Oriented Testing for Finite State Machines Mahsa Varshosaz, Harsh Beohar AVOCS 2014 Centre for Research on Embedded Systems (CERES) Halmstad University

2
Motivation Testing a family of software 2

3
Motivation (cont) 3

4
Outline Model Based Testing –W-Method Delta-oriented W-Method 4

5
Model Based Testing System Model Implementation LTS FSM … Test Case Generation Test Execution 5

6
Finite State Machine Inputs I={a,b} Outputs O={0,1} s0s0 b/0 b/1 a/0 a/1 s2s2 s1s1 6

7
Model Assumptions Fully specified ∀ i∈I Deterministic Minimal ≢ s i/o s i/o’ s S’S’ 7

8
W-Method Basis: FSM test models Goal : Establish conformance between specification and implementation 8

9
Transition Cover Set (P) Goal: Checking existence of output faults – P={ ƹ,a,b,a,aa,aaa,aab } s0s0 s2s2 s1s1 b/0 b/1 a/1 a/0 s0s0 s0s0 s1s1 s0s0 s2s2 s0s0 s2s2 a b a b a b 9

10
Characterizing Set (W) Goal: Checking existence of transfer faults W={a,b} s0s0 s2s2 s1s1 b/0 b/1 a/1 a/0 Input /states0s0 s1s1 s2s2 a011 b001 10

11
Test Cases The set of test cases to be executed R.P.W –R : the reset sequence 11

12
Outline Model Based Testing –W-Method Delta-oriented W-Method 12

13
Delta-Oriented Modeling Core Model Delta 1 Delta i Delta n … … PiPi P1P1 PnPn 13

14
Delta Oriented Testing Core Model (M) ∆(M) 1 … … Mi’Mi’ ∆(M) i ∆(M) n Generating Test Cases Generating DeltaTest Cases Executing Test 14

15
FSM Delta ∆ (M)=(S ∆,I ∆,O ∆, μ ∆,λ ∆ ) –S ∆ non-empty set of states –I ∆, O ∆ set of inputs and outputs –μ ∆ : (S ⋃ S ∆ ) x I ∆ ⟶ (S ⋃ S ∆ ) –λ ∆ : (S ⋃ S ∆ ) x I ∆ ⟶ O ∆ ⋃ τ 15

16
FSM Delta (Example) s0s0 b/0 a,b/0 b/0 a,b/1 a,c/0 s2s2 s1s1 s3s3 c/0 c/1c/0 t1t1 t2t2 t3t3 a/1 a,b/1 c/1 b,c/1 a/1 b,c/1 a/0 b/0 16

17
Delta Application Apply(M, ∆ (M))= (s 0, S’, I’, O’, μ’, λ’) –S’= S ⋃ S ∆ I’=I ∆ O’=O ∆ μ ∆ (s, a) if (s, a) ∈ Dom(μ ∆ ) –μ’(s, a) = μ (s, a) if a ∈ I ∧ (s, a) ∉ Dom(μ ∆ ) s otherwise λ ∆ (s, a) if (s, a) ∈ Dom(λ ∆ ) – λ’(s, a) = λ (s, a) if a ∈ I ∧ (s, a) ∉ Dom(λ ∆ ) τ otherwise 17

18
Delta Application (Example) s0s0 b/0 a,b/0 b/0 a,b/1 a,c/0 s2s2 s1s1 s3s3 c/0 c/1c/0 t1t1 t2t2 t3t3 a/1 a,b/1 c/1 b,c/1 a/1 b,c/1 a/0 b/0 b/1 18

19
Test Criteria Two criteria for solutions –Correctness –Efficiency Considering an SPL with n products Core Model (M) ∆ (M) i M’ i 19

20
Correctness 20

21
Efficiency 21

22
Work in Progress Developing algorithms for computing: –Characterizing set –Transition cover set Extending the delta definition Implementing the delta oriented method 22

23
Thank you

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google