Download presentation

Presentation is loading. Please wait.

Published byMakena Stell Modified over 3 years ago

1
ENGG 2040C: Probability Models and Applications Andrej Bogdanov Spring 2014 The probabilistic method

2
Sometimes probability helps us solve problems that do not involve randomness at all.

3
Friends and “non-friends” Among every six people, there must be three that are all friends or are all “non-friends”. Proof : I must have at least 3 friends, or at least 3 non-friends If I have 3 friends: Either they are all non-friends with one another, Or a pair of them are friends, so the three of us are all friends.

4
Ramsey’s theorem Among every 4 n people, there must be n that are all friends or all “non-friends”. 4 n is a very large number! E.g. when n = 40, 4 n = 109 951 162 777 Do we really need that many people for that?

5
Erdös’s theorem There can be 2 n/2 - 1 people among which no n of them are all friends or all non-friends. Proof: Let N = 2 n/2 - 1 Probability model: Every pair is friends with probability ½, independently of the others. (for n ≥ 3 ) Let X be the number of groups of n people that are all friends or all non-friends.

6
Erdös’s theorem where X g is an indicator r.v. for the event “People in g are all friends or all non-friends.” E[X g ] = P(X g = 1) = 2∙2 -C(n, 2) E[X] = ∑ groups g E[X g ] ≤ N n ∙ 2 ∙ 2 -C(n, 2) = 2 n log N + 1 – n(n – 1)/2 < 1. X = ∑ groups g of n people X g, = C(N, n) ∙ 2 ∙ 2 -C(n, 2)

7
Erdös’s theorem Because E[X] 0. So the event X = 0 can happen. But X = 0 means there is no group of n people in which all are friends or all are non-friends. We used probability not to model any reality, but as a tool to solve a mathematical problem about friendships.

8
Quicksort 1. Choose a pivot stick p. 2. Go over all other sticks from left to right: Move all sticks shorter than p to the left of p 3. Recursively sort sticks to the left of p. 4. Recursively sort sticks to the right of p. and all sticks longer than p to the right of p.

9
Quicksort How to choose the pivot?

10
Quicksort Every pivot works, but some take us there faster than others We will measure the number N of pairwise comparisons done by the algorithm N depends on the input and on the choice of pivot We want to choose the pivot so N is small regardless of the input

11
Quicksort Example: What if we always chose the leftmost pivot? requires all possible C(n, 2) comparisons for n sticks For any fixed pivot-choosing strategy there is an input that entails all possible C(n, 2) comparisons

12
The randomized quicksort algorithm 1. Choose a pivot stick p uniformly at random. 2. Go over all other sticks from left to right: Move all sticks shorter than p to the left of p 3. Recursively sort sticks to the left of p. and all sticks longer than p to the right of p.

13
Analysis of randomized quicksort The number N of pairwise comparisons is now a random variable that depends on the pivot choices N = N 12 + N 13 +... + N (n-1)n where N ij is an indicator r.v. for the event “the i th and j th shortest sticks were compared at some point” N ij = 0 happens if sticks i and j were split before either was chosen as pivot

14
Analysis of randomized quicksort ij P(N ij = 0) = j – i + 1 j – i – 1 P(N ij = 1) = j – i + 1 2 E[N] = E[N 12 ] + E[N 13 ] +... + E[N (n-1)n ] = (n – 1) × 2/2+ (n – 2) × 2/3 +... + 1 × 2/n ≤ n × (2/2 + 2/3 +... + 2/n) ≤ 2n ln n.

15
What is next? If you like probability you will find lots of it... Computer networks [CSCI 4430, CSCI 5470] Reliable communication [IERG 3010, IERG 5154] Secure communication and computation [CSCI 5440] Algorithm design [CSCI 3160, CSCI 5450] Data privacy [CSCI 5520] The nature of efficient computation [CSCI 5170] Machine learning [CSCI 3320]

Similar presentations

OK

CPSC 335 Randomized Algorithms Dr. Marina Gavrilova Computer Science University of Calgary Canada.

CPSC 335 Randomized Algorithms Dr. Marina Gavrilova Computer Science University of Calgary Canada.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on ecology and ecosystem Ent anatomy and physiology ppt on cells Ppt on drinking water alarm Ppt on asian continent videos Ppt on 2-stroke diesel-engine Ppt on private labels in india Free ppt on law of demand Ppt on business cycle phases in order Converter doc em ppt online training Ppt on access control system